

Chapter 10

Special Features of the Radix Printer

In the previous chapters we have learned about several groups of control codes. In this chapter we will look at more control codes. These codes don't fit neatly into any of the groupings that we have studied, but they add a lot of capability to Radix. So here goes.

Commands covered in this chapter include:

- Bell
- Master reset
- Unidirectional printing
- Eighth bit control
- Block graphics

－International character sets
 －Macro instruction

Now hear this

You may have heard Radix＇s bell if you have ever run out of paper．And you may have wondered why it＇s called a bell when it beeps instead of ringing！It＇s a long story that goes back to the early days of computers，when teletype machines were used for com－ puter terminals．These mechanical marvels had a bell in them that could be heard for blocks．This bell was used to signal the operator that something needed attention．The code that the computer sent to the teletype machine to ring the bell was，reasonably enough， called a bell code．Well the name bell code is still with us，even if the bell has changed to a beeper，and a lot of people still call the beeper a bell，even if it doesn＇t sound like one．So with our trivia lesson out of the way，let＇s see how we can＂ring the bell．＂

The code to sound Radix＇s＂bell＂is CHR\＄（7），which is ASCII code 7 or 〈BEL〉．Any time Radix receives this code it will sound the bell for a quarter of a second．This can be used to remind an operator to change the paper or to make another adjustment to the printer．Note to Apple users：Entering a CHR\＄（7）will sound Apple＇s bell；the code will not be sent to Radix．

You can try this by typing：

LPRINT CHR $\$(7)$ ；

There are two other codes that affect the bell．One disables the bell，so that Radix will ignore a CHR\＄（7），and the other turns the bell back on．All three codes that affect the bell are shown in the following table．

Table 10－1
Bell commands

Function	Control code
Sound bell	CHR $\$(7)$
Disable bell	〈ESC＂Y＂CHR\＄（0）
Enable bell	（ESC）＂Y＂CHR\＄（1）

Initializing Radix

Up to now when we wanted to reset Radix to the power on
condition we have had to either turn the printer off and then on again，or to send the specific codes that reset the particular fea－ tures．There is an easier way．The control code 〈ESC〉＂＠＂will reset all of Radix＇s features to the power on condition（as deter－ mined by the DIP switches），with two exceptions．Those excep－ tions are that 〈ESC〉＂＠＂will not erase any characters that you have stored in Radix＇s RAM memory（Chapter 11 tells you how to create your own characters），and it won＇t erase the macro if you have one stored in Radix＇s RAM（this chapter will tell you how to create a macro）．

Putting Radix to sleep

You know how to put Radix off－line with the On Line button． Radix has another off－line state that can be controlled from your computer．When you turn Radix offline from your computer， Radix will ignore anything that you send it，except for the code to go on－line again．CHR\＄（19）is the code to turn Radix off－line； CHR\＄（17）returns Radix to on－line status．

Printing to the bottom of the sheet

Sometimes when you are using sprocket paper you may want to print near the bottom of the last sheet．The paper－out detector usually stops Radix when you are about 3 inches from the bottom of the sheet．This is to notify you if you are running out of continu－ ous paper．

Radix has the ability to print right to the bottom of the sheet． You can disable the paper－out detector so that it doesn＇t stop the printer．This will allow you to print to the end of the sheet，and even beyond if you are not careful．The codes to control the paper－ out detector，along with the other codes that we have just learned are in the following table．

Table 10－2
Some miscellaneous commands

Function	Control code
Master reset	\langle ESC＂$@ "$
Off－line	CHR\＄（19）
On－line	CHR $\$(17)$
Paper－out detector off	$\langle E S C\rangle$＂ 8 ＂＇
Paper－out detector on	\langle ESC \rangle＂ $9 "$
Move print head back one space	CHR\＄（8）
Delete last character sent	CHR\＄（127）

Backspace and delete

Backspace (CHR\$(8)) "backs up" the printhead so that you can print two characters right on top of each other. Each time Radix receives a backspace it moves the printhead one character to the left, instead of to the right. You can strike over multiple letters by sending more than one backspace code.

Delete (CHR\$(127)) also "backs up" one character, but then it "erases" the previous character (it's erased from Radix's buffer, not from the paper).

The following program shows how these two codes work.

```
1\emptyset 'Demo backspace and delete codes.
2\emptyset LPRINT "Backspace does not" ;
30 LPRINT CHR$(8) CHR$(8) CHR$(8) ; 'Three backspaces.
40 LPRINT "=== work."
5\emptyset LPRINT "Delete does not" ;
60 LPRINT CHR$(127) CHR$(127) CHR$(127) ; 'Three
    deletes.
7\emptyset LPRINT "work."
```

Here is what this program will print:

```
Backspace does mot work.
```

Delete does work.

The backspace codes in line 30 move the printhead a total of three spaces to the left so that the first part of line 40 will overprint the word "not". The delete codes in line 60 "erase" the three letters in the word "not" so that it doesn't even print.

Unidirectional printing

Unidirectional printing is a big word that means printing in one direction only. Radix normally prints when the printhead is moving in both directions. But once in a while you may have an application where you are more concerned about how the vertical lines align than with how fast it prints. Radix lets you make this choice. The table below shows the commands for controlling how Radix prints.

Table 10-3
Printing direction commands

Function	Control code
Print in one direction	\langle ESC \rangle "U" CHR\$(1)
Print in both directions	\langle ESC " U " CHR\$(0)

Try this program to see the difference that printing in one direction makes.

10 'Demo unidirectional printing.
$2 \emptyset$ LPRINT CHR (27) "A" CHR\$(7) ; 'Line spacing = 7/72".
30 FOR $I=1$ TO $1 \emptyset$
$4 \varnothing$ LPRINT " 1 "
50 NEXT I
$6 \emptyset$ LPRINT : LPRINT
$7 \varnothing$ LPRINT CHR $\$(27)$ "U" CHR $\$(1)$; 'Turn on unidirectional printing.
$8 \varnothing$ FOR $I=1$ TO $1 \varnothing$
$9 \emptyset$ LPRINT "|"
$10 \emptyset$ NEXT I
$11 \varnothing$ LPRINT CHR\$(12) CHR\$(27) "@" ; 'Form feed, master reset.

Here is what you will get. The top line is printed bidirec-
tionally, and the bottom is printed unidirectionally. You will have to look hard because there isn't much difference.

Let's analyze the program. Line 20 sets the line spacing to $7 / 72$ of an inch so that the characters that we print will touch top to bottom. Lines $\mathbf{3 0 - 5 0}$ print 10 vertical line characters. Then line 70 sets one-direction printing and the vertical lines are printed again. Finally line 110 sends a form feed to advance the paper to the top of a new page, and then uses the master reset to restore Radix to the power-on condition.

The seven bit dilemma

Certain computers (most notably the Apple II) don't have the capability to send eight bits on their parallel interface. They can only send seven bits. This would make it impossible for these computers to use Radix's block graphics characters and special symbols if Star's engineers hadn't thought of a solution. (All of these characters have ASCII codes greater than 127 which means that the eighth bit must be on to use them.) The solution lies in the three control codes given in the following table.

Table 10-4
Eighth bit control commands

Function	Control code
Turn the eighth bit ON	\langle ESC \rangle " $\rangle "$
Turn the eighth bit OFF	$\left\langle\right.$ ESC ${ }^{\prime \prime}="$
Accept the eighth bit	
"as is" from the computer	$\langle E S C\rangle$ "\#"

Block graphics characters and special symbols

Besides the upper and lower case letters and symbols that we are by now familiar with, Radix has a whole different set of characters that are for special uses. These characters include block graphics characters for drawing forms and graphs, and special symbols for mathematical, engineering and professional uses. The following program will print out all of the graphics characters available.

[^0]```
5\emptyset LPRINT I "= " ;
6\emptyset LPRINT CHR$(I) ; 'Send graphic char.
7\emptyset LPRINT CHR$(9) ; 'Tab.
8\emptyset NEXT I : LPRINT : NEXT J
```

Figure 10-1 shows what this program will print. If your chart doesn't look like this because it has regular letters and numbers instead of the special symbols, then your computer is only using seven bits (unless you have set DIP switch C-3 on by mistake). You can get the correct printout by adding these lines:

55 LPRINT CHR $\$(27)$ " $>$ " ; 'Turn on 8th bit.
65 LPRINT CHR\$(27) "=" ; 'Turn off 8th bit.

So how are all of these strange characters used? Here is a short program that demonstrates how the graphics characters can be combined to create figures.

```
10 'Draws a figure with block graphic chars.
2\emptyset LPRINT CHR$(27) "A" CHR$(6) ; 'Set line spacing
 to 6/72".
30 LPRINT CHR$(235) CHR$(231) CHR$(231) CHR$(236)
40 LPRINT CHR$(233) CHR$(163) CHR$(161) CHR$(234)
50 LPRINT CHR$(233) CHR$(162) CHR$(160) CHR$(234)
60 LPRINT CHR$(237) CHR$(232) CHR$(232) CHR$(238)
7\emptyset LPRINT CHR$(27) "2" ; 'Restore 1/6" line spacing.
```

If you have a 7-bit interface, add the following lines to the program given above.

25 LPRINT CHR $\$(27)$ " $"$; 'Turn on 8th bit. 65 LPRINT CHR $(27)$ " $=$ " ; 'Turn off 8th bit.

In this program line 20 sets the line spacing to 6 dots which is the height of the graphics characters. Then lines $30-60$ print the

| $160=$－ | $161=-$ | $162=-$ | $16 \pm=\cdots$ |
| :---: | :---: | :---: | :---: |
| $168=0$ | $169=$ | $179=\%$ | $171=\mathrm{t}$ |
| $176=$ Tx | $177=8$ | $178=\square$ | $179=0$ |
| $184=$ I | $185=6$ | $186=0$ | $167=\pi$ |
| $172=\bar{A}$ | $193=a$ | $174=5$ | $195=\mathrm{E}$ |
| $200=t$ | $201=3$ | $202=E$ | $203=0$ |
| $208=7$ | $207=$ A | $210=6$ | $211=u$ |
| $216=$ i | $217=6$ | $218=$ E | $219=$ e |
| $224=$ | $225=$ | $226=$ | 227 |
| $232=-$ | $23 \mathrm{~S}=1$ | $2 \mathrm{~S}=$ | $2 \mathrm{~S}=$－ |
| $240=$ | $241=$ | $242=7$ | 243 |
| $248=$－ | $249=-1$ | $250=+$ | $251=F$ |

Figure 10－1．
figure，and line 70 resets the line spacing to $1 / 6$ inch．Here is what this program prints：

## $\theta$

## International character sets

Radix is a multi－lingual printer for it can speak in eight lan－ guages！Radix changes languages by changing 11 characters that are different for the different languages．These sets of characters

## Table 10－5 <br> International character set commands

| Country | Control code |
| :---: | :---: |
| U．S．A． | 〈ESC〉＂7＂CHR\＄（0） |
| England | 〈ESC〉＂7＂CHR\＄（1） |
| Germany | 〈ESC〉＂7＂CHR\＄（2） |
| Denmark | 〈ESC＞＂7＂CHR\＄（3） |
| France | 〈ESC〉＂7＇CHR\＄（4） |
| Sweden | 〈ESC〉＂7＂CHR\＄（5） |
| Italy | 〈ESC〉＂7＂CHR\＄（6） |
| Spain | 〈ESC〉＂7＂CHR\＄（7） |


| $164=t$ | $165=$ | $166=$ | $167=\div$ |
| :---: | :---: | :---: | :---: |
| $172=4$ | $173=\%$ | $174=*$ | $175=0$ |
| $180=5$ | $181=$ | $182=5$ | $18 \mathrm{E}=3$ |
| $188= \pm$ | $189=\square$ | $150=9$ | $191=\div$ |
| $196=\bar{E}$ | $177=\mu$ | $198=0$ | $197=$ |
| $204=4$ | 205 | $208=$ 上 | $297=11$ |
| $212=4$ | $213=F$ | $214=$ a | 215 $=0$ |
| $220=1$ | $221=$ e | 220 rion | $225=f$ |
| $298=$ | $229={ }^{2}$ | $2 \mathrm{O}={ }^{\mathbf{m}}$ | 2－1 |
| $236=$－ | $2 \mathrm{E} 7=$－ | $2 \mathrm{~S}=\mathrm{m}$ | 279 |
| $244=1$ | $245=1$ | $246=1$ | $247=$ |
| 2 或 $=$ | 25－$=$＊ | $254=m$ | 25E |

are called international character sets．The control codes to select the international character sets are given in Table 10－5．

The characters that change are shown beneath their ASCII code in Table 10－6．

Table 10－6
International character sets

| Country | 35 | 64 | 91 | 92 | 93 | 94 | 96 | 123 | 124 | 125 | 126 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U．S．A． | \＃ | ＠ | ［ | 1 | ］ | $\wedge$ | － | \｛ | ！ | \} | $\sim$ |
| England | £ | ＠ | ［ | 1 | 1 | $\wedge$ | $\cdot$ | \｛ | ， | \} | $\sim$ |
| Germany | \＃ | § | A | 0 | Ü | $\wedge$ | ， | ä | ö | ü | $\beta$ |
| Denmark | \＃ | ＠ | A | $\Phi$ | $\AA$ | $\wedge$ | － | $\boldsymbol{æ}$ | $\varnothing$ | $\dot{\mathrm{a}}$ | $\sim$ |
| France | £ | à | － | ç | § | $\wedge$ | ＇ | é | ù | è | ． |
| Sweden | \＃ | É | $\ddot{\text { Ă }}$ | Ö | A | Ü | é | ä | ö | á | ü |
| Italy | \＃ | § | 。 | C | é | $\wedge$ | ù | à | ò | è | i |
| Spain | \＃ | ＠ | i | $\tilde{N}$ | ¿ | $\wedge$ | ， | ． | ñ | \} | $\sim$ |

## The macro control code

The last of our group of miscellaneous control codes is defini－ tely not the least．It is a user－defined control code，called a macro control code．The term macro is from the jargonese macro－instruc－ tion which refers to an instruction that＂calls，＂or uses a group of normal instructions．In computer programming macro－instruc－
tions (which are similar to subroutines) save programmers a lot of time and effort. Radix's macro can save you a lot of time and effort also.

Here is how Radix's macro works. You define your macro by telling Radix what normal control codes are to be included in the macro. Then you can use the macro any time that you want and Radix will do all the things that you included in the macro definition. You can include up to 16 codes in a single macro. You can even use the macro to store a frequently used word or phrase. There are two control codes for the macro: one to define it, and one to use it. They are given in the table below.

Table 10-7
Macro instruction commands

| Function | Control code |
| :--- | :--- |
| Define macro | $\langle$ ESC $\rangle+" \ldots$ codes you include . . . CHR\$(30) |
| Use macro | $\langle$ ESC $\rangle$ "!" |

To see how this works we can build a macro that will reset the printing style to normal, no matter what style it may be to start with. The following program will define a macro to do this.

```
10 'Defines a macro that will reset RADIX to normal.
2\emptyset LPRINT CHR$(27) "+" ; 'Start macro definition.
30 LPRINT CHR$(18) ; 'Select pica pitch.
4\emptyset LPRINT CHR$(27) "W" CHR$(}\varnothing\mathrm{) ; 'Expanded off.
50 LPRINT CHR$(27) "F" ; 'Emphasized off.
60 LPRINT CHR$(27) "H" ; 'Double-strike off.
7\emptyset LPRINT CHR$(27) "-" CHR$(}\varnothing\mathrm{) ; 'Underline off.
80 LPRINT CHR$(27) "T" ; 'Super & subscripts off.
90 LPRINT CHR$(27) "5" ; 'Select roman character set.
10\emptyset LPRINT CHR$(30) ; 'End macro definition.
```

As the comments in the program listing show this will define a macro that will reset all the print style functions. Radix will remember this macro until the power is turned off or until a new macro is defined. A macro can hold up to 16 bytes (characters) of information. The one that we defined contains fifteen.

Now that you have defined a macro, let's see how to use it. This program will print one line using several printing style fea-
tures．Then it＂calls＂the macro in line 60 ．When line 70 prints the style is＂plain vanilla＂because the macro has reset it．

```
10 IUses macro to reset RADIX to normal.
2\emptyset LPRINT CHR$(27) "4" ; 'Italic.
3\emptyset LPRINT CHR$(27) "G" ; 'Double-strike.
4\emptyset LPRINT CHR$(27) "W" CHR$(1) ; 'Expanded.
50 LPRINT "This line is special."
60 LPRINT CHR$(27) "!" ; 'Use the macro.
70 LPRINT "This line is normal printing."
```



```
This line is normal printing.
```

In this chapter we have learned many different commands that have many different uses．In the next chapter we will make up for this diversity－the whole chapter only covers three com－ mands！But they are some of the most powerful that Radix offers． They give you the ability to create your own characters．

## Summary

Control code
CHR\＄（7）
〈ESC〉＂Y＂CHR\＄（0）
〈ESC〉＂Y＂＇CHR\＄（1）
〈ESC〉＂（0）＂
CHR\＄（19）
CHR\＄（17）
〈ESC〉＂ 8 ＂
〈ESC〉＇9＂
〈ESC〉＂U＂CHR\＄（1）
〈ESC〉＂U＂CHR\＄（0）
CHR\＄（8）
CHR\＄（127）
〈ESC〉＂＞＂
〈ESC〉＂＝＂
〈ESC〉＂\＃＂
（ESC）＂ 7 ＂n
〈ESC〉＂＋＂．．．CHR\＄（30）
〈ESC〉＂！＂

## Function

Bell
Disable bell
Enable bell
Reset
Off－line
On－line
Paper－out detector off
Paper－out detector on
Unidirectional printing
Bidirectional printing
Backspace
Delete
Eighth bit on
Eighth bit off
Eighth bit as－is
Select international character set
Define macro
Use macro


Chapter 11

## Creating Your Own Characters

In this chapter we'll cover:

- Designing and printing your own characters
- Designing proportional characters

In the previous four chapters of this manual you've learned how to control the Radix printer to give you dozens of different typefaces. By using various combinations of pitches, character weights, and font selections, you can create nearly any effect you want to in text. And with international character sets and the special text and graphics characters described in Chapter 10, you can print almost any character you can think of.

But if "almost any character" isn't good enough for you, then it's a good thing you have a Radix printer! With it you can actually create your own characters. As you'll see in this chap-
ter, download characters can be used to print a logo, special characters for foreign languages, scientific and professional applications, or any other specific printing task.

## Dot Matrix Printing

In order to create download characters, you'll need some understanding of how dot matrix printers work. They're called "dot matrix" because each character is made up of a group of dots. Look closely at some printed characters produced by your Radix and you will see the dots. Figure 11-1 shows how the letter " C " is formed by printing 15 dots.


Figure 11-1. The letter " $C$ " is created by printing 15 dots.

The printhead in Radix consists of nine thin wires stacked one atop the other. Figure 11-2 shows an enlarged schematic view of the front of the printhead, showing the ends of the wires and their relationship to the printed characters. As you can see, the capital letters use the top seven wires of the printhead, and the descenders (such as the lower case " g " shown) use the bottom seven pins. As the printhead moves across the page (in either direction-that's what is meant by bi-directional printing) it prints one column of dots at a time. Each time a dot is supposed to print an electromagnet inside the printhead causes the appropriate wire to strike the ribbon (making Radix an impact printer).

## The Print Matrix

All of the standard characters that Radix prints are formed from patterns of dots that are permanently stored in the printer's ROM (read-only memory). This includes all of the standard ASCII characters, the block graphics and special characters, the international character sets, the NLQ characters and the italic characters.

But there is another area of memory in Radix reserved for


Figure 11-2. As the printhead moves across the page, each of the wires prints one row of dots.
user-defined characters. These are characters that you design and download into Radix. When download characters are defined they are stored in RAM (random access memory), which allows you to define or modify them at any time.

Each of these characters, whether it is from the standard character ROM or in download RAM, is constructed on a grid which is six "boxes" wide by nine "boxes" high. The dots used to print a character can be inside any of the boxes. In addition, a dot can straddle any of the vertical lines. As an example, take a look at the enlarged " 9 " superimposed on the grid in Figure 11-3. As you can see, some dots are inside the boxes, and some are centered on the vertical lines. This, in effect, makes the character grid 11 dots wide by 9 dots high. To see how the rest of the characters in the standard character ROM are constructed, take a look at Appendix J.


Figure 11-3. Dots can be inside boxes or straddle the vertical lines of the grid.

## Defining Your Own Characters

You've seen how the engineers at Star designed their characters by using a grid to lay out the dots. Now you can define characters exactly the same way. Make up some grids (photocopy Figure 11-4 if you wish) and get ready to be creative! (Just in case you are not feeling creative, and to make our explanations a little clearer, we'll be using a "bullet" as an example of a download character. You can see how we've laid it out in Figure 11-5. You'll find this useful for highlighting a list of items, as we have done at the beginning of each chapter in this manual.

You'll notice that Figure 11-4 includes a lot of information around the grid. Don't be intimidated; we'll explain each item as we come to it in our discussion of defining and actually printing download characters. You may have noticed another difference between this grid and the one shown in Figure 11-3: it's only seven boxes high. Which leads us to. . .

## Rule 1: Download characters are seven dots high

As you noticed in Figure 11-2, capital letters, most lowercase letters, and most special characters use only the top seven pins of the printhead. This is also the standard for download characters, so our grid is only seven dots high.

It's also possible to use the bottom seven pins, just as the " g ", " p ", " $q$ ", and " " " of the standard character sets do. These are called descenders (because the bottom of the character descends


Figure 11-4. Use this grid (or one similar to it) to define your own characters.
below the baseline of the rest of the characters).
One bit in the download character definition command is used to tell Radix whether a character is to be treated as a descender or not. We'll get to the command in due time. For now, if your character uses the top seven dots, write in a zero next to the word "Descender" on the layout grid; if it uses the bottom seven dots, write in a one. In our example, we'll want the bottom of the bullet to line up with the baseline of the other characters, so it will not be a descender. As shown in Figure 11-5, we've written in a " 0 " on our grid.

## Rule 2: Dots cannot overlap

As you can see in Figure 11-5 our bullet will print fairly solid. But, you may ask, why not make it really solid and print all the intermediate dots, as shown in Figure 11-6? Because the dots that straddle the vertical lines in the grid actually overlap those inside the boxes. If we tried to print overlapping dots, Radix's print head would have to slow down and back up to print both dots-not very efficient! To avoid this inefficiency, Radix will not allow you to define a character like Figure 11-6. (Actually, you can define it, but


Figure 11-5. We've designed a character and decided that it would not be a descender, hence the " 0 " written in.


Figure 11-6. Dots cannot overlap; those in immediately adjacent "half columns" will be ignored when the character is printed.
when it prints, Radix will leave out the overlapping dots, so that it would print like Figure 11-5.)

## Add up each column of dots

Now it's time to give our creative side a break and get down to some basic arithmetic. That's where the numbers down the left side of the grid come in. Notice that there is a number for each row of dots and that each number is twice the previous number. By making these numbers powers of two we can take any combination of dots in a vertical column and assign them a unique value. Some examples will make this clearer. As shown in Figure 11-7, if we add the numbers for the dots that print in a column, the sum will be a number in the range of 0 to 127. Each number from 0-127 represents a unique combination of dots.

So add up the values of the dots in each column using this system. This way it takes one number to describe each column of dots. In Figure 11-8 we've shown our grid with the sums of the columns filled in across the bottom (see if these agree with your


Figure 11-7. By adding the values of each dot in a column, you'll get a unique description for any combination of dots.
answers!). Across the top of the grid you've probably noticed the cryptic labeling of each column: m1, m2, m3, etc. These labels correspond to the labels in the command syntax statement, which we'll get to shortly.

## Assigning a value to your character

We've done a pretty thorough job of designing and describing
a user-defined character. But the Radix has room for 189


Figure 11-8. Add the values of the dots in each column and write the sum of each column at the bottom.
download characters-how does it know which user-defined character we want to print? Exactly the same way it knows which standard character we want to print: every character is assigned a unique number.

The standard characters are assigned the ASCII codes-numbers from 0 to 255. For the download character sets there are two banks of characters that can be defined: values from 33 to 126 and 160 to 254. This means that once a character is defined and assigned a value (and the download character set is selected), you can use that character on the printer the same way you would any standard character. You can send the character with the same ASCII value (for instance, if you had assigned your character a code of 66 , it would print each time you sent a character " $B$ " to the printer). You can also access the character from a BASIC program with the CHR\$ function-in this case LPRINT CHR\$(66) would print the character.

Except for the limitation that download characters must be assigned values in the range of 33 to 126 or 160 to 254 , there are no rules or restrictions on the use of numbers. This means you can
use whatever is most convenient for you-perhaps seldom-used keys can be replaced by more useful characters. In our example, we'll assign the bullet a value of 43 , which is the ASCII value for the " + " character. This way, when we want to print a bullet, all we have to do is send the printer a + .

To make our demonstration of download characters more complete, we've designed two more characters. To avoid confusion between the letter " $O$ " and zero, we have created a slashed zero to replace Radix's zero (ASCII 48). And, since some people prefer the "lb" abbreviation for pound, we've replaced Radix's "\#" symbol (ASCII 35) with a "lb." The information on the grids is now complete (except for proportional width data-a more advanced topic we'll take up shortly).

## Download character definition command

You've read through a long explanation of download characters and we haven't even told you the command syntax yet! Now the wait is over. This is the most complex command in the Radix repertoire and now you've got the necessary knowledge to implement it. Here it is:

〈ESC〉"*" CHR\$(1) n1n2m1m2m3m4m5m6m7m8m9m10m11


Figure 11-9. Character designs for our three characters.

Like the other Radix commands, it starts with an 〈ESC〉 (CHR\$(27)). The next character is an asterisk (*), which is CHR\$(42), followed by a CHR\$(1).
$n 1$ is the value we assign to the character-in the case of the bullet it is CHR\$(43).
$n 2$ is called the attribute byte, for it describes two attributes of the character we have designed: descender data and proportional width information. A byte consists of eight bits. In the attribute byte, the first three (high order) bits are unused, the fourth bit is used for the descender data, and the last four bits are used for proportional widths. We'll be discussing proportional character widths in detail later in this chapter; for now, we'll leave it at 11. The descender data was discussed earlier: to use the top seven pins, this bit should be 0 ; to use the bottom seven pins this bit should be 1. Figure $11-10$ shows the bits of the attribute byte as we'll use them for our bullet character. Since the descender data is 0 , the value of the byte is equal to the value of the proportional data-11. By now you've probably seen an easier way to determine the value of the attribute byte. Instead of translating everything to binary, merely assign the descender data a value of 16 (the value of the fourth bit) if you want descenders, or 0 if you don't want descenders. Then just add the descender data to the proportional width. This way, it's simply a matter of adding two decimal numbers. (In our case, it's $0+11=11$.)


Figure 11-10. The attribute byte (n2) for our bullet character.

You'll probably recognize m1. . .m11 from the top of our layout grid. That's right, each column is described by one byte. Now we've got everything we need to download one character to the printer. The complete command for our bullet character is shown in Figure 11-11.

Now let's send the information to the printer. The following program will send the character definitions for all three characters to the printer. Enter the program and run it.


Figure 11-11. This is the complete command to send our bullet character to the Radix printer.

10 'Downloads symbols.
$2 \emptyset$ OPEN "LPT1:" AS \#1 : WIDTH \#1,255
$3 \emptyset$ FOR I = 1 TO 3 'Do three character downloads.
40 PRINT \#1,CHR\$(27) "*" CHR\$(1) ; 'Begin char download.
50 READ N1\$,N2
60 PRINT \#1,N1\$ CHR\$(N2) ; 'Send char code, and attribute.
$7 \emptyset$ FOR M = 1 TO 11 'Send 11 bytes of download per char.
$8 \emptyset$ READ D
$9 \emptyset$ PRINT \#1,CHR\$(D) ;
$10 \emptyset$ NEXT M
110 NEXT I
120 CLOSE \#1
130 LPRINT
$14 \emptyset$ DATA "+",11,24,36,9ø,36,9ø,36,9ø,36,24,,$\emptyset$
$15 \emptyset$ DATA " $\emptyset$ ", 11,92,34, $\varnothing, 81,8,69, \emptyset, 34,29, \emptyset, \emptyset$
$16 \emptyset$ DATA "\#",11,127, $\emptyset, \emptyset, 127, \emptyset, 68, \emptyset, 68,56, \emptyset, \emptyset$

When you run this program, it looks like nothing happens. That's OK. We'll see why in just a moment. Save this program. We'll need it again shortly.

## Printing Download Characters

You've now defined and sent three characters to the Radix.

But how do you know that？If you try printing those characters now（type LPRINT＂+0 ＂＂）you don＇t get a bullet，slashed zero and ＂lb．＂Instead you get ．．．+0 \＃．That＇s because the download char－ acters are stored in a different part of Radix＇s memory．To tell it to look in download character RAM instead of standard character ROM it requires another command：

〈ESC〉＂\＄＂CHR\＄（n）

This command is used to select the download character set（if $n=1$ ）or to select the standard character set（if $n=0$ ）．Let＇s try it out．Enter this command：

LPRINT CHR\＄（27）＂\＄＂CHR\＄（1）＂＋O\＃＂

Voila！It should have printed out the three characters we defined．Your printout should look like this：

あoit
（If it doesn＇t，check the last program we ran for errors，then re－ run it．）

Let＇s find out if there are any other characters in the download RAM．Try this program：

```
10 'Print all RAM characters.
2\emptyset LPRINT CHR$(27) "$" CHR$(1) ; 'Select download
 characters.
30 FOR I = 33 TO 126 : LPRINT CHR$(I) ; : NEXT I
40 FOR I = 16\emptyset TO 254 : LPRINT CHR$(I) ; : NEXT I
50 LPRINT
6\emptyset LPRINT CHR$(27) "$" CHR$(\emptyset) ; 'Select ROM characters.
```

Nope！Just three characters in the download set．This is incon－ venient for a couple of reasons．First，every time you wanted to use a download character you would have to switch back and
forth between character sets．Knowing that you wouldn＇t want to do that，Radix won＇t even allow it．Standard characters and download characters cannot be mixed in a line．If you want to use download characters，the command should appear at the begin－ ning of the line．All subsequent characters（even on following lines）are printed with the download set until you return to the standard characters with an 〈ESC〉＂\＄＂CHR\＄（0）．（Note that the〈ESC〉＂\＄＂CHR\＄（1）command can be in the middle of a line，and that entire line will be printed with the download characters．Like－ wise，if you select the standard character set anywhere in a line， the entire line will be printed with the standard characters．Con－ flicting commands within a line can cause unpredictable results．）

So does that mean that in order to print something meaning－ ful with our special symbols we have to define an entire alphabet？ Fear not．The engineers at Star have made it an easy task to use mostly standard characters with just a few special characters thrown in．This command copies all the characters from the standard character ROM into download RAM：

```
〈ESC> "*" CHR$(\emptyset)
```

Since it will copy all characters into the download area，it will wipe out any characters that are already there．So it＇s important to send this command to the printer before you send any download characters you want to define．With that in mind，add this line to the program we used to send the characters to Radix：

25 PRINT \＃1，CHR\＄（27）＂＊＂CHR\＄（ $\varnothing$ ）；＇Copy ROM to RAM．

Now try the download printout test program again．Your results should look like Figure 11－12．You probably noticed that our printout test includes the characters with ASCII values from 160 to 254，but nothing prints．The 〈ESC〉＂＊＂CHR\＄（0）command copies only the standard ASCII characters（those in the range of 33 to 126）to download RAM；it does not copy any block graphics characters．

To demonstrate how to use these characters，let＇s use this character set with a word processing program to print a grocery ad．Just as you learned in Chapter 3，send the printer control codes to select download characters（27361）followed by this text：


```
DEFGHIJKLMNOFOFSTUNWXYZ[\]% "abcdEfgh
i jt:1mnopqretuvwsyz Ei)*
```

Figure 11-12. Printout of the download character set, into which all the standard characters have been copied, and the \#, +, 0 have been changed.

Today's Specials

+ Oranges 10 \# / \$1. $\varnothing \emptyset$
+ Ocean Perch \$1.90/\#

Your output should look like this:

Today ${ }^{3}=$ Special $=$


- Gcean Ferch $\$ 1.90 / \mathrm{b}$

Just a sampling of Radix's download capabilities! As you can see, it's no problem to define characters in BASIC (or another language) and use them with a word processor or other application.

Note that we didn't have to re-enter the download characters, since they were already sent to the printer with the previous program. They will stay with the printer until you download new characters to replace them or turn the printer off. Even the 〈ESC〉 "@" command, which initializes the printer, does not destroy the contents of download RAM.

Table 11-1
Download character definition commands

| Function | Control code |
| :--- | :--- |
| Define download character | $\langle\mathrm{ESC}\rangle$ " $*$ " $\mathrm{CHR} \$(1) \mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \ldots \mathrm{~m} 11$ |
| Copy ROM to download RAM | $\langle\mathrm{ESC}\rangle$ " $*$ " CHR\$(0) |

## Proportional Characters

Up until now, all the characters that your Radix has printed have been of a fixed width-either 10, 12, or 17 (or 5,6 or 8.5 in expanded mode) characters per inch. Whichever pitch you select, all the characters are the same width. You'll notice though, that in typeset books, such as this one, each character has a slightly different width. For instance, the " $i$ " is quite narrow, and the " $W$ " is very wide. This is more pleasing to the eye and easier to read.

So, if you're going to go to the trouble of designing your own download characters for Radix, you might as well make them pleasing to the eye! Proportional download characters allow you to do just that. As you'll remember from our initial discussion of download character definition, part of the attribute byte is for proportional width data. We skipped over that, with the promise of describing it later. Well now is the time!

## Defining proportional characters

Except for the actual width, defining characters for proportional printing is exactly the same as defining normal width download characters. Characters can range from 4 to 11 dots wide. This means that characters can be as narrow as one-third the normal width. The examples in Figure 11-13 show characters of different widths. These characters are defined in the program that follows.

```
\(1 \varnothing\) 'Downloads proportional characters into RAM.
\(2 \emptyset\) OPEN "LPT1:" AS \#1 : WIDTH \#1,255
30 FOR C \(=1\) TO 4
40 READ C \(\$, C O D E\)
\(5 \emptyset\) PRINT \#1, \(\mathrm{CHR} \$(27)\) "*" \(\mathrm{CHR} \$(1) \mathrm{C} \$ \mathrm{CHR} \$(\mathrm{CODE})\);
60 FOR I = 1 TO 11
\(7 \emptyset\) READ BITS
\(8 \emptyset\) PRINT \#1, CHR \(\$(B I T S)\);
\(9 \varnothing\) NEXT I
100 NEXT C
110 CLOSE \#1
\(12 \emptyset\) 'Print a sample.
\(13 \emptyset\) LPRINT " Mississippi"
140 LPRINT
150 LPRINT "ROM char set, normal spacing."
160 LPRINT
```

```
17\emptyset LPRINT
18\emptyset 'Select RAM set, normal spacing.
19\emptyset LPRINT CHR$(27) "$" CHR$(1) ;
2\emptyset\emptyset LPRINT " Mississippi"
210 'Cancel RAM set, normal spacing.
22\emptyset LPRINT CHR$(27) "$" CHR$(\emptyset)
23\emptyset LPRINT "RAM char set, normal spacing."
240 LPRINT
250 LPRINT
26\emptyset 'Select RAM set, proportional spacing.
27\emptyset LPRINT CHR$(27) "X" CHR$(1) ;
28\emptyset LPRINT " Mississippi"
290 'Cancel RAM set, proportional spacing.
3\emptyset\emptyset LPRINT CHR$(27) "X" CHR$(}0
31\emptyset LPRINT "RAM char set, proportional spacing."
320 END
33\emptyset DATA "M",11,1,126,1,2,4,8,4,2,1,126,1
34\emptyset DATA "i",4,64,61,64,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
35\emptyset DATA "p",23,127,\emptyset,17,\emptyset,17,14,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
36\emptyset DATA "s",6,8,84,\emptyset,84,32,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
```



Figure 11-13. These download characters are defined as proportional characters.

One thing to remember about defining proportional charac－ ters：a character cannot be wider than the specified width．That seems obvious enough！For example，if you specify a width of 6 for a character，the seventh through eleventh columns of dots（if you specified any）will not print．You must，however，send information （even if it is 0 ）for those columns when you define a character； Radix expects eleven characters following the 〈ESC〉＂＊＂ CHR\＄（1）n1 n2 sequence．

In most cases，the width you select should actually be at least one dot wider than the number of columns that the character actu－ ally occupies．This is so that there will be a space（of one dot） between characters when you print them．If you specify a width which is exactly the same as the number of columns in the charac－ ter definition，the characters will touch when they print（this is sometimes desirable－for border characters or for large download characters that are more than eleven dots wide）．

## Printing proportional characters

Printing with proportional download characters is much like using normal width download characters：one command is used to select the download set or the standard character set．Here＇s the command：

## 〈ESC〉＂X＂CHR\＄（n）

If $\boldsymbol{n}$ is 1 ，then the download character set is selected，and pro－ portional widths are used．If $n$ is 0 ，the standard character set is selected．

It should be noted that it is possible to use the same character definitions for either normal width or proportional download char－ acters（if a valid proportional width is included in the attribute byte）． The only difference is the way they are accessed：〈ESC〉＂\＄＂ CHR\＄（1）for normal width or 〈ESC〉＂X＂CHR\＄（1）for proportional width．The two commands work independently of each other，so that 〈ESC〉＂\＄＂CHR\＄（0）will not turn off proportional download characters，and 〈ESC〉＂X＂CHR\＄（0）will not turn off normal width download characters．If you have selected both normal and propor－ tional download characters，proportional will print until you send the printer an 〈ESC〉＂X＂CHR\＄（0）．The printer will then continue to print with normal width download characters（rather than returning to the standard character set）until you send an 〈ESC〉＂\＄＂CHR\＄（0）．

This can lead to confusion if you have accidentally specified both types of download characters.

```
 Mississippi
FOM char set, normal spacing.
Mississippi
FAM char set, normal spacing.
 Mississippi
RAM char set: proportional spacing.
```

Figure 11-14. This printout shows the same text, printed with the same download characters, in both normal and proportional widths.

Table 11-2
Download character printing commands

| Function | Control code |
| :--- | :--- |
| Normal download characters ON | $\langle\mathrm{ESC}\rangle$ "\$" CHR\$(1) |
| Normal download characters OFF | $\langle\mathrm{ESC}\rangle$ "\$" CHR\$(0) |
| Proportional download characters ON | $\langle\mathrm{ESC}\rangle$ "X" CHR\$(1) |
| Proportional download characters OFF | $\langle\mathrm{ESC}\rangle$ "X" CHR\$(0) |

## Connecting characters

As we noted earlier, it's possible to connect proportional width characters. This can be useful for creating logos or other characters which are larger than one normal character. It also makes it possible to create connecting scripts, like handwriting. The trick to this is to specify the width in the attribute byte to be exactly the same as the number of columns of dots that the character (or partial character) occupies. And, if you change the vertical spacing to $7 / 72$ " (use the 〈ESC〉 " 1 " command), you can make characters connect vertically. This allows you to make very large characters indeed!

In the program that follows, we've used this technique to create some large numbers. Each digit is actually made up of four characters-two horizontally by two vertically. This means, of course, that you must define and print four characters for each finished digit. We assigned the upper left quadrant of each digit to ASCII codes from 160 to 169, the upper right quadrant to codes 170 to 179, and so on. Figure 11-15 shows how one digit is defined, and Figure 11-16 shows the final output of our program.


Figure 11-15. Each digit is made up of four individual characters.

10 'Program to define and print BIG numerals.
20 'Each numeral is made up of four characters,
30 'two wide, and two high.
40 'A blank is also defined.
50
60 'Download the 41 special characters.
$7 \varnothing$ OPEN "LPT1:" AS \#1 : WIDTH \#1,255
$8 \emptyset$ FOR N1 = $16 \emptyset$ TO $2 \emptyset \emptyset$ ' N 1 is the char code.
90 PRINT \#1,CHR\$(27) "*" CHR\$(1) ;
$19 \emptyset$ PRINT \#1,CHR\$(N1);
110 READ N2
$12 \emptyset$ PRINT \#1,CHR\$(N2);

130 FOR S = 1 TO 11
140 READ MS
$15 \emptyset$ PRINT \#1,CHR\$(MS);
$16 \emptyset$ NEXT S
170 NEXT N1
$18 \varnothing$ CLOSE \#1
$19 \emptyset$ BLANK\$ $=\operatorname{CHR} \$(2 \emptyset \emptyset)$
$2 \not 0{ }^{\prime}$
210 'Print the BIG numerals.
$22 \emptyset$ LPRINT
$23 \varnothing$ LPRINT CHR $\$(27)$ "X" CHR\$(1) ; 'Select RAM chars.
$24 \varnothing$ LPRINT CHR $\$(27)$ " " ; '7/72" line spacing.
250 'Print the top half of the numerals.
$26 \varnothing$ FOR NUM $=\varnothing$ TO 9
$27 \emptyset$ LPRINT CHR $\$($ NUM*4+16 $)$ CHR\$(NUM*4+161) BLANK\$ ;
280 NEXT NUM
290 LPRINT
300 'Print the bottom half of the numerals.
$31 \varnothing$ FOR NUM $=\varnothing$ TO 9
320 LPRINT CHR $\$($ NUM*4+162) CHR $\$(N U M * 4+163)$ BLANK $\$$;
330 NEXT NUM
$34 \varnothing$ LPRINT CHR $\$(27)$ "X" CHR $\$(\varnothing)$; 'Deselect RAM.
$35 \emptyset$ LPRINT CHR $\$(27)$ " 2 " $11 / 6$ " line spacing (normal).
360 'ZERO
$37 \emptyset$ DATA $11, \varnothing, 96,16,104,16,44,3 \varnothing, 14, \varnothing, 2,1$
380 DATA $11,2,1,2,1,6,8,38,88,32,88,32$
$39 \emptyset$ DATA $11,3,12,19,12,51, \emptyset, 96, \emptyset, 96, \emptyset, 96$
$4 \emptyset \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,12,3,4,3$
$41 \varnothing$ 'ONE
$42 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4, \emptyset, 4, \emptyset, 4,126$
$43 \varnothing$ DATA $9,12,114,12,114,12,2, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing$
$44 \varnothing$ DATA $11,64, \emptyset, 64, \emptyset, 64, \varnothing, 64,32,8 \emptyset, 47,8 \emptyset$
$45 \emptyset$ DATA $9,47,8 \emptyset, 47,64, \varnothing, 64, \emptyset, 64, \varnothing, \emptyset, \varnothing$
460 ' TWO
$47 \varnothing$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 12,16,14, \emptyset, 6, \emptyset$
$48 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$49 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$5 \emptyset \emptyset$ DATA $11,44,64,38,65,34,65,32,8 \emptyset, 32,88, \varnothing$
510 ' THREE
$52 \emptyset$ DATA $11, \varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4,2,4,2,4$
$53 \varnothing$ DATA $11,34,84,34,92,34,76,34,68,2,64, \emptyset$
540 DATA $11,16, \emptyset, 48, \emptyset, 56,64,48,64,32,64,32$
550 DATA $11,64,32,64,48,9,54,9,22,9,6,1$
561 ' FOUR
$57 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$58 \emptyset$ DATA $11, \emptyset, \emptyset, 64,32,64,56,64,6 \emptyset, 2,12, \varnothing$
$59 \emptyset$ DATA $11, \emptyset, 8,4,1 \emptyset, 5,1 \emptyset, 5,8,4,72,4$
$6 \emptyset \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \varnothing$
610 ' FIVE
$62 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$63 \emptyset$ DATA $1 \varnothing, 34,68,34,68,34,68,2,68,2, \emptyset, \emptyset$
$64 \emptyset$ DATA $1 \varnothing, \emptyset, 32,24,1 \varnothing 1,24,97, \emptyset, 64, \varnothing, 64, \varnothing$
$65 \emptyset$ DATA $11,64, \emptyset, 96,1,48,15,48,15,16,15, \emptyset$
$66 \emptyset$ ' SIX
$67 \emptyset$ DATA 11, $\varnothing, 96, \emptyset, 112, \emptyset, 12 \emptyset, \emptyset, 92, \varnothing, 1 \emptyset 2, \emptyset$
$68 \emptyset$ DATA $11,98, \varnothing, 98, \emptyset, 98, \emptyset, 7 \emptyset, \varnothing, 14, \emptyset, 6$
$69 \emptyset$ DATA $11,7,8,23,8,55,8,99, \emptyset, 65, \emptyset, 64$
$7 \emptyset \emptyset$ DATA 11, $\varnothing, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \emptyset$
710 ' SEVEN
$72 \emptyset$ DATA $11, \emptyset, 16,8,6,8,6,8,6,8,6,8$
$73 \emptyset$ DATA $9,7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \emptyset, 2, \varnothing, \emptyset$
$74 \varnothing$ DATA $11, \varnothing, 64, \emptyset, 96, \emptyset, 12 \emptyset, \varnothing, 124, \varnothing, 3 \emptyset, 1$
$75 \emptyset$ DATA $9,6,1, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \varnothing$
$76 \emptyset$ ' EIGHT
$77 \emptyset$ DATA 11, $\varnothing, \emptyset, \emptyset, \emptyset, 24,36,24,1 \emptyset 2,24,1 \emptyset 2, \emptyset$
$78 \emptyset$ DATA 11,67, $\varnothing, 67, \emptyset, 99,28,34,28,34,28, \emptyset$
$79 \emptyset$ DATA 11,12,18,44,19,1ø8,19,96,1,64, $\varnothing, 64$
$8 \emptyset \emptyset$ DATA 11, $\emptyset, 96,1,112,15,48,15,16,14, \emptyset, \emptyset$
810 ' NINE
$82 \emptyset$ DATA $11, \emptyset, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \emptyset, 3, \emptyset$
$83 \emptyset$ DATA 11,3, $\varnothing, 3, \emptyset, 67,4,123,4,122,4,12 \emptyset$
$84 \emptyset$ DATA $11,48, \emptyset, 56, \emptyset, 113, \emptyset, 99, \emptyset, 99, \emptyset, 99$
$85 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \varnothing, 31, \emptyset, 15, \varnothing, 7, \varnothing$
$86 \emptyset$ ' SPACE
$87 \emptyset$ DATA $11, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing$

## 0123456789

Figure 11-16. The output for characters like this must be carefully planned.

## Mixing Print Modes with Download Characters

It's possible to get even more printing effects by combining
download characters with the various print modes available with Radix. Most of the commands that you learned in Chapter 7 work with normal width download characters as well as standard characters. A few of them will work with proportional download characters as well. Table 11-3 summarizes the various print modes and their compatibility with download characters.

Table 11-3
Mixing download characters with various print modes

|  | Normal width <br> (Escape \$) | Proportional <br> (Escape X) |
| :--- | :---: | :---: |
| Standard Characters | Yes | Yes |
| Italic | - | - |
| NLQ Characters | - | - |
| Pica | Yes | Yes |
| Elite | Yes | - |
| Condensed | Yes | - |
| Expanded | Yes | - |
| Double-strike | Yes | - |
| Emphasized | Yes | - |
| Underline | Yes | Yes |
| Super/subscript | Yes | - |

## A Utility Program

If you've followed along this far you've probably become pretty proficient at designing download characters. And even the addition is getting easier! But this is a good computer applica-tion-Computer Aided Design (CAD) for download characters. The program below allows you to design and edit characters on the screen. You can make changes (no erasing!) until it's the way you like it, and then the program makes the necessary calculations and sends the character to Radix.

As you can see, at 205 lines this is quite a long program! However, if you want to use the full capabilities of Radix's download characters, you'll really appreciate it.

## Instructions for using DLEDIT

The program screen is shown in Figure 11-17. Above the main grid (where you actually place the dots) there are two informational lines.

The first line tells the ASCII code of the character being edited (and in parentheses, the normal character for that code). The next field in the first line tells whether the character being edited is a descender or not ( a " 1 " indicates that it is; " 0 " means that it is not).

The second status line shows the proportional width of the character being defined. The asterisks extend over the columns of dots to indicate the actual width when the character is printed using the 〈ESC〉 " X " command.

Below the layout grid is the prompt line. This will appear only when you need to enter information, such as the ASCII code of the character you wish to define.

To the right of the layout grid is the command menu. All of the valid commands are defined here; if you press any other key, the computer will beep and no action will be taken. Below, each command is defined in greater detail.
P - Print the character. This command takes the character that is currently on the screen and prints it in condensed, elite, pica, expanded pica, and proportional widths so you can see how it looks. In addition, it prints the complete character set in both normal and proportional widths. At the end of the printout is the data statement necessary to download this character through a BASIC program.


Figure 11-17. DLEDIT screen display shows ASCII code and character layout.

A - Set ASCII code. To change the ASCII code (which is shown in the first status line), press "A." You will then be prompted for the code you want to use.
C - Clear all dots. Press "C" to get a clean screen.
Q- Quit. "Q" closes all files and ends the program.
R - Perform ROM copy. The ROM character set will be copied to download RAM immediately.
$\uparrow \leftarrow \rightarrow \downarrow$ - Move cursor. The arrow keys are used to move the cursor around the grid.
Ins - Insert. The insert key places a dot at the current cursor location.
Del - Delete. The delete key deletes a dot from the current cursor location.

+     - Wider. Use the " +" key to increase the proportional width, which is indicated by the row of asterisks above the grid. The maximum width is 11 columns.
-     - Narrower. Use the "-" key to decrease the proportional width. The minimum width is four columns.
D-Descender. This command toggles the descender flag, which is shown in the first status line. If it is equal to zero, the top seven pins of the printhead are used; if it is equal to 1 , the bottom seven pins are used to create a descender character.
Enjoy the program!

```
1\emptyset 'Program to allow editing down-load characters.
2\emptyset 'for the RADIX printer.
30'
40 'Initialization.
50 DIM Z(8,12),MM(11)
60 AS=33
7\emptyset CS$=CHR$(16)+CHR$(17):SC$=STRING$(2,219)
80 RAMNML$ = CHR$(27) + "$" + CHR$(1)
90 RAMNMLOFF$ = CHR$(27) + "$" + CHR$(\varnothing)
10\emptyset RAMPRO$ = CHR$(27) + "X" + CHR$(1)
11\emptyset RAMPROOFF$ = CHR$(27) + "X" + CHR$(\emptyset)
120 OPEN "LPT1:" AS #2 : WIDTH #2,255
130 LPRINT CHR$(27) "@" ; : WIDTH "LPT1:",255
140 GOSUB 1930
150 '
160 'Main loop.
17\emptyset A$=INKEY$:IF A$="" THEN 17\emptyset
18\emptyset B$ = LEFT$(A$,1)
19\varnothing IF B$ = CHR$(}\varnothing\mathrm{) THEN 290
```

```
200 IF A$ = "+" THEN GOSUB 1060 : GOTO 370 'Wider.
210 IF A$ = "-" THEN GOSUB 1090 : GOTO 370 'Narrower.
22\emptyset IF A$ = "D" OR A$ = "d" THEN GOSUB 112\emptyset : GOTO 37\varnothing
230 IF A$="Q" OR A$="q" THEN GOSUB 380 : END
240 IF A$="P" OR A$="p" THEN GOSUB 136\varnothing : GOTO 370
250 IF A$="C" OR A$="c" THEN GOSUB 193\varnothing : GOTO 37\varnothing
260 IF A$="A" OR A$="a" THEN GOSUB 172\emptyset : GOTO 37\emptyset
27\varnothing IF A$="R" OR A$="r" THEN GOSUB 198\varnothing : GOTO 37\varnothing
28\emptyset BEEP:GOTO 37\emptyset
290 B$=RIGHT$(A$,1)
30\emptyset IF B$=CHR$(75) THEN GOSUB 910:GOTO 37\emptyset 'Left.
310 IF B$=CHR$(77) THEN GOSUB 930:GOTO 370 'Right.
32\emptyset IF B$=CHR$(8\emptyset) THEN GOSUB 95\emptyset:GOTO 37\emptyset 'Down.
330 IF B$=CHR$ (72) THEN GOSUB 97\emptyset:GOTO 37\emptyset 'Up.
340 IF B$=CHR$(82) THEN GOSUB 990:GOTO 37\varnothing 'Insert.
350 IF B$=CHR$(83) THEN GOSUB 1030:GOTO 370 'Delete.
360 BEEP
370 GOTO 17\varnothing
380 COLOR 7,\emptyset : CLS
390 CLOSE #1,#2
400 RETURN
410 '
42\emptyset ' Subroutine to paint screen.
4 3 0 ~ C L S ~
44\varnothing GOSUB 182\emptyset
450 '
46\emptyset 'Draw grid.
47\emptyset P1 = 1 : M$ = CHR$(179) + STRING$(2,32)
48\emptysetN$ = STRING$(2,196) + CHR$(197)
490 L$ = STRING$(2,196) + CHR$(193)
5\emptyset\emptyset LOCATE 4,1\emptyset:PRINT CHR$(218);CHR$(196);
51\emptyset FOR I=1 TO 1\varnothing
52\emptyset PRINT CHR$(196) CHR$(194) CHR$(196) ; : NEXT I
53\varnothing PRINT CHR$(196) CHR$(191) : LOCATE 5,1\emptyset
540 FOR K=1 TO 12 : PRINT M$; : NEXT K : PRINT
550 FOR J=1 TO 6:LOCATE 5+P1,10:P1=P1+1:PRINT CHR$(195);
560 FOR K=1 TO 10:PRINT N$;:NEXT K
57\emptyset PRINT CHR$(196) CHR$(196) CHR$(18\emptyset)
580 LOCATE 5+P1,10 : P1=P1+1
590 FOR K=1 TO 12:PRINT M$;:NEXT K
6\emptyset\emptyset PRINT:NEXT J:LOCATE 18,1\emptyset:PRINT CHR$(192);
610 FOR I=1 TO 10:PRINT L$;:NEXT I
62\emptyset PRINT CHR$(196);CHR$(196);CHR$(217)
```

630 FOR $I=\emptyset$ TO 6:LOCATE $5+\mathrm{I} * 2,6:$ PRINT $2^{\wedge} \mathrm{I}$; :NEXT I 640
650 'Put in dots.
$66 \varnothing$ FOR H = 1 TO $11:$ FOR J = 1 TO $7: 2(\mathrm{~J}, \mathrm{H})=\varnothing$
$70 \emptyset$ NEXT J : NEXT H
710 FOR H = 1 TO 11 : GOSUB $12 \not 0 \emptyset:$ NEXT H
$72 \emptyset \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$
$730^{\circ}$ GOSUB 1300
740
750 'Paint menu.
760 LOCATE 6,47 : PRINT "P -- Print the character."
770 LOCATE 7,47 : PRINT "A -- Set ASCII code."
780 LOCATE 8,47 : PRINT "C -- Clear all dots."
790 LOCATE 9,47 : PRINT "Q -- Quit."
$8 \emptyset \emptyset$ LOCATE 10,47 : PRINT "R -- Perform ROM copy."
$81 \varnothing$ LOCATE 11,44 : PRINT CHR\$(24) CHR\$(27) CHR\$(26)
CHR $\$(25)$;
820 PRINT " -- Move cursor."
$83 \emptyset$ LOCATE $12,45:$ PRINT "ins -- place a dot.";
$84 \varnothing$ LOCATE 13,45:PRINT "del -- remove a dot.";
850 LOCATE 14,47 : PRINT "+ -- make character wider." ;
860 LOCATE 15,47 : PRINT "- -- make character narrower."
;
870 LOCATE 16,47 : PRINT "D -- Toggle descender mode." ;
880 RETURN
890
900 'Edit subroutines.
910 GOSUB 1240:Y=Y-3:H=H-1:IF Y/1 THEN BEEP: $\mathrm{Y}=1: \mathrm{H}=1$
920 GOSUB 1300:RETURN
$93 \varnothing$ GOSUB 124ø:Y=Y+3:H=H+1:IF $\mathrm{Y}>31$ THEN BEEP: $\mathrm{Y}=31: \mathrm{H}=11$
940 GOSUB 1300:RETURN
950 GOSUB $1240: \mathrm{X}=\mathrm{X}+2: \mathrm{G}=\mathrm{G}+1:$ IF $\mathrm{X}>13$ THEN BEEP:X=13:G=7
960 GOSUB 1300:RETURN
970 GOSUB 1240:X=X-2:G=G-1:IF X<1 THEN BEEP:X=1:G=1
980 GOSUB 1390:RETURN
990 IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN BEEP:RETURN
$1 \not \emptyset \emptyset 2(\mathrm{G}, \mathrm{H})=1$ : COLOR 31,1
1010 LOCATE X+4,Y+1ø : PRINT SC\$ ; : COLOR 7, $\varnothing$
$102 \emptyset$ GOSUB 1150 : RETURN
$103 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\varnothing$ : COLOR 7, $\varnothing$
$104 \varnothing$ LOCATE $\mathrm{X}+4, \mathrm{Y}+1 \varnothing$ : PRINT CS $\$$; : COLOR 7, $\varnothing$

```
1050 GOSUB 1150 : RETURN
1060 IF PROWID = 11 THEN BEEP : RETURN
1070 PROWID = PROWID + 1
1080 GOSUB 182\emptyset : RETURN
1090 IF PROWID = 4 THEN BEEP : RETURN
1100 PROWID = PROWID - 1
111\emptyset GOSUB 182\emptyset : RETURN
112\emptyset IF DESC = 1 THEN DESC = }\varnothing:\mathrm{ GOTO 114 }
1130 DESC = 1
1140 GOSUB 182\emptyset : RETURN
1150
1160 'Subroutine to calculate a column value & print it.
117\emptyset MM(H) = \emptyset : FOR J=1 TO 7
118\emptyset MM(H)=MM(H)+Z(J,H)*\mp@subsup{2}{}{\wedge}(\textrm{J}-1)
1190 NEXT J : GOSUB 12\emptyset\emptyset : RETURN
1200
1210 'Subroutine to print a column value.
122\emptyset LOCATE 19,7+H*3 : PRINT RIGHT$(" "+STR$(MM(H)),3)
 ;
1230 RETURN
1240
1250 'Subroutine to remove the cursor.
1260 LOCATE X+4,Y+10
127\varnothing IF Z(G,H) = \emptyset THEN PRINT " " ;
128\emptyset IF Z(G,H) = 1 THEN COLOR 7, }\varnothing\mathrm{ : PRINT SC$;
1290 RETURN
1300
1310 'Subroutine to place the cursor.
132\emptyset LOCATE X+4,Y+1\varnothing
133\emptyset IF Z(G,H)=1 THEN COLOR 31,1 : PRINT SC$; : COLOR
 7,\varnothing
134\varnothing IF Z(G,H)=\varnothing THEN COLOR 7,\emptyset : PRINT CS$;
1350 RETURN
136\emptyset
137\emptyset 'Subroutine to print current character.
1380 GOSUB 2050
1390 LPRINT "ASCII code =" AS : LPRINT
140\varnothing PRINT #2,REC$; 'Download the character.
141\emptyset LPRINT CHR$(27) "B" CHR$(3) "Condensed"
142\emptyset LPRINT RAMNML$ STRING$(21,AS)
1430 LPRINT RAMNMLOFF$
144\varnothing LPRINT CHR$(27) "B" CHR$(2) "E1ite"
1450 LPRINT RAMNML$ STRING$(15,AS)
146\varnothing LPRINT RAMNMLOFF$
```

$147 \emptyset$ LPRINT $\operatorname{CHR} \$(27)$＂B＂CHR\＄（1）＂Pica＂
$148 \emptyset$ LPRINT RAMNML\＄STRING $\$(12, A S)$
$149 \emptyset$ LPRINT RAMNMLOFF $\$$
1500 LPRINT CHR\＄（27）＂W＂CHR\＄（1）＂Expanded＂
1510 LPRINT RAMNML\＄STRING\＄（6，AS）
$152 \emptyset$ LPRINT RAMNMLOFF\＄CHR $\$(27)$＂W＂CHR $\$(\emptyset)$
1530 LPRINT＂Character set（normal width）＂
$154 \varnothing$ LPRINT RAMNML $\$$ ；
1550 FOR I＝33 TO 126 ：LPRINT CHR $\$(\mathrm{I})$ ；：NEXT ：LPRINT
$156 \emptyset$ FOR $\mathrm{I}=16 \emptyset$ TO 254 ：LPRINT CHR\＄（I）；：NEXT ：LPRINT
$157 \emptyset$ LPRINT RAMNMLOFF\＄
1589 LPRINT＂Proportional＂
$159 \emptyset$ LPRINT RAMPRO $\$$ STRING $\$(15, A S)$
$16 \emptyset \emptyset$ LPRINT RAMPROOFF\＄
1610 LPRINT＂Character set（proportional）＂
$162 \emptyset$ LPRINT RAMPRO\＄；
1630 FOR $\mathrm{I}=33$ TO 126 ：LPRINT $\operatorname{CHR} \$(\mathrm{I})$ ；：NEXT ：LPRINT
1640 FOR I＝16Ø TO 254 ：LPRINT CHR\＄（I）；：NEXT ：LPRINT
$165 \emptyset$ LPRINT RAMPROOFF $\$$
1660 LPRINT ：LPRINT ：LPRINT
$167 \emptyset$ LPRINT＂Use this data statement to download this character．＂
$168 \emptyset$ GOSUB $295 \emptyset:$ LPRINT＂DATA 27＂；
1690 FOR I $=2$ TO LEN（REC\＄）
$170 \emptyset$ LPRINT＂，＂STR\＄（ASC（MID $\$(\operatorname{REC} \$, I, 1)))$ ；
$171 \emptyset$ NEXT I ：LPRINT ：LPRINT ：LPRINT ：LPRINT ：RETURN $172 \emptyset$
$173 \varnothing$＇Subroutine to input desired character code．
$174 \varnothing$ LOCATE 23，5
$175 \emptyset$ INPUT＂Enter ASCII code（33－126 OR 160－254）－－＞＂； AS
$176 \emptyset$ GOSUB $2 \emptyset 1 \emptyset$
$177 \emptyset$ IF AS 〈 33 OR AS 〉 254 THEN BEEP ：GOTO $174 \varnothing$
$178 \emptyset$ IF AS 〈 $16 \emptyset$ AND AS 〉 126 THEN BEEP ：GOTO $174 \emptyset$
$181 \emptyset$ GOSUB $182 \emptyset:$ RETURN
$182 \emptyset$
$183 \varnothing$＇Subroutine to display header．
1840 LOCATE 1,1 ：PRINT＂ASCII CODE＝＂AS ；
1850 PRINT＂（＂CHR\＄（AS AND \＆H7F）；
1860 IF AS＞ 127 THEN PRINT＂＋128＂；
$187 \emptyset$ PRINT＂）＂；
$188 \emptyset$ LOCATE 1，3Ø ：PRINT＂DESCENDER＝＂DESC ；

```
190\emptyset LOCATE 3,1\emptyset : PRINT STRING$(33, " ") ;
191\emptyset LOCATE 3,2 : PRINT "WIDTH : " STRING$(PROWID*3,
 "*") ;
1920 RETURN
1930
1940 'Subroutine to clear current character.
195\emptyset PROWID = 11 : DESC = }
196\varnothing FOR H = 1 TO 11 : MM(H) = \varnothing : NEXT H
197\varnothing GOSUB 41\varnothing : RETURN
1980
1990 'Subroutine to perform a ROM copy.
20\emptyset\emptyset LPRINT CHR$(27) "*" CHR$(\emptyset) ; : RETURN
2ø1\varnothing '
2\emptyset2\emptyset 'Subroutine to erase query message.
2030 LOCATE 23,5 :PRINT STRING$(70," ") ;
2040 RETURN
2050
2060 'Subroutine to build command string.
2070 REC$ = CHR$(27) + "*" + CHR$(1)
2\emptyset8\emptyset REC$ = REC$ + CHR$(AS) + CHR$(DESC*16 + PROWID)
2\emptyset9\emptyset FOR I = 1 TO 11 : REC$ = REC$ + CHR$(MM(I)) : NEXT
 I
21\emptyset\emptyset RETURN
```


## Summary

## Control code

## Function

〈ESC〉＂＊＂CHR\＄（1）n1 n2 m1 ．．．m11
Defines download character into RAM
〈ESC〉＂＊＂CHR\＄（0） Copies fonts in ROM into download RAM
〈ESC〉＇X＂CHR\＄（1）Selects the download character set and uses proportional spacing
〈ESC〉＂X＂CHR\＄（0）Cancels proportional download charac－ ter set
〈ESC〉＂\＄＂CHR\＄（1）Selects the download character set and uses normal spacing
〈ESC〉＂\＄＂CHR\＄（0）Cancels normal download character set


Chapter 12

## Printing With Dot Graphics

Subjects covered in this chapter include:

- Radix's bit image graphics capabilities
- Printing a pre-defined shape
- Plotting a calculated shape
- High resolution graphics

In Chapter 11 you were introduced to a form of computer graphics; you were able to actually define characters dot by dot. In this chapter you'll learn to use the same principles to make Radix print whole pages of dot graphics! We'll show you how to use dot graphics to create "super download characters." In addition, you'll see how your Radix printer can be used as a graphics plotter. This can have some practical business applications as well as create some terrific computer art!

## Comparing Dot Graphics with Download Characters

A good understanding of dot graphics requires an understanding of how dot matrix printers work; you may want to review the first few pages of Chapter 11. The principles for dot graphics are the same as those for download characters.

There are some differences in the way they are implemented however. While download commands can be used to define a character between four and eleven columns of dots wide, dot graphics commands can be used to define a shape as narrow as one column of dots wide or as wide as 3264 dots on a Radix-15!

There is no "descender data" with dot graphics; graphics images are always printed with the top seven or eight pins of the print head, depending on whether you have a 7 -bit or 8 -bit interface (if you're not sure which type of interface your computer has, check the appendix for your computer).

So when do you use graphics and when do you use download characters? Practically anything you can do with graphics you can do with download characters, and vice versa. A clever programmer could actually plot a mathematical curve using download characters or use strings of graphics data as userdefined characters. But why do it the hard way? There are several instances when dot graphics is clearly the best way to approach the problem:

- If the graphic image to be printed is wider than 11 dots or higher than 7 dots
- If an image is to be printed just one time, as opposed to a frequently used "text" character
- If you want higher resolution (Radix can print as many as 240 dots per inch in dot graphics mode; text mode, which includes download characters, prints 60 dots per inch)


## Using the Dot Graphics Commands

The command to print normal density ( 60 dots per inch horizontal; $\mathbf{7 2}$ dots per inch vertical) dot graphics uses this format:

Just like many of the other codes you have learned, the command starts with an escape sequence ( $\langle E S C\rangle$ " $K$ " in this case). But unlike Radix's other codes there can be any number of graphics data bytes following the command. That's where $n 1$ and $n 2$ come in; they are used to tell Radix how many bytes of graphics data to expect.

## Specifying the number of columns of dots

To figure the values of $n 1$ and $n 2$, you'll need to figure out how wide your graphic image will be (remember that there are 60 columns of dots per inch in normal density). Then comes the fun part: converting one number (the number of columns of dots) into two! Why is it necessary to use two numbers to tell Radix the number of graphics codes to expect? Because the largest number we can send in one byte (that's what the BASIC CHR\$( ) function sends: one byte) is 255 . And with normal density graphics it's possible to have a graphics image as wide as 480 dots on Radix-10 or 816 dots on Radix-15. So to figure out how many columns of graphics data to expect, Radix multiplies n2 by 256 and adds the value of $n 1$ to the product. If you divide the number of columns by 256 , then $n 2$ is the quotient and $n 1$ is the remainder (why not let your computer figure it out for you: if the number of columns is assigned to variable X , then $\mathrm{N} 1=\mathrm{X}$ MOD 256 and $\mathrm{N} 2=\mathrm{INT}(\mathrm{X} /$ 256)). Table 12-1 might make things even easier.

Table 12-1
Calculating $n 1$ and n2

| If the number of columns, <br> x, ranges from: | then $\mathbf{n 1}$ is: | and $\mathbf{n}$ 2 is: |
| :---: | :---: | :---: |
| 1 to 255 | x | 0 |
| 256 to 511 | $\mathrm{x}-256$ | 1 |
| 512 to 767 | $\mathrm{x}-512$ | 2 |
| 768 to 1023 | $\mathrm{x}-768$ | 3 |
| 1024 to 1279 | $\mathrm{x}-1024$ | 4 |
| 1280 to 1535 | $\mathrm{x}-1280$ | 5 |
| 1536 to 1791 | $\mathrm{x}-1536$ | 6 |
| 1792 to 2047 | $\mathrm{x}-1792$ | 7 |
| 2048 to 2303 | $\mathrm{x}-2048$ | 8 |
| 2304 to 2559 | $\mathrm{x}-2304$ | 9 |
| 2560 to 2815 | $\mathrm{x}-2560$ | 10 |
| 2816 to 3071 | $\mathrm{x}-2816$ | 11 |
| 3072 to 3264 | $x-3072$ | 12 |
|  |  |  |

## Specifying the graphics data

Now that we've told Radix how much data to expect, we better figure out how to send that information! Just as you do with download characters, with dot graphics you have control over the firing of every single pin on Radix's print head. In Figure 12-1, you can see that we've labeled each pin on the print head with a number, as we did with download characters (you should note one important difference: this time the top pin has the highest value; for download character definitions it is the bottom pin). And specifying pins to fire is done in the same way: to fire the second pin from the top, for instance, send a CHR\$(64). Firing several pins at once is done in a similar fashion. For example, to print the first, third, and fourth dots, add their values $(128+32+16)$ to send this total: CHR\$(176). This is one byte of graphics data; it would replace $m 1$ in our format statement on page 140.


Figure 12-1. Starting with the most significant bit at the top, each pin of the print head is assigned a value which is a power of two. Note that for 7-bit computers, the top pin has a value of 64, and the bottom two pins are unused.

A short program should demonstrate how to implement the graphics command. The program below gave us this printout:


```
40 OPEN "LPT1:" AS #1 : WIDTH #1,255
50 PRINT #1,CHR$(27) "K" CHR$(WID MOD 256)
 CHR$(INT(WID/256)) ;
6\varnothing FOR I = \emptyset TO WID-1
7\emptyset PRINT #1,CHR$(2^INT((1+SIN(I*PI/32))*3.5+.5)) ;
8 0 ~ N E X T ~ I ~
90 LPRINT
1ø\emptyset CLOSE #1
```

In line 50 we've selected normal density graphics and said that 100 characters of graphics data would follow. The loop between lines 60 and 80 is repeated to plot 100 points along a curve. This is an example of plotting a very simple mathematical function (a sine wave) to create a design. Later in this chapter we'll show something more complex. The mathematical concepts (such as sine and pi) demonstrated here are not important; you don't have to be a math whiz to use Radix's graphics.

## Combining text and graphics

It's also possible to mix text and graphics in one line. This can be useful for labeling charts or graphs, or even inserting fancy graphics in text. Try adding these lines to our program:

45 PRINT \#1,"WOW!" ;
85 PRINT \#1,"This is great!" ;

Now if you run the program you should get a printout that looks like this:

WOW!


But there is one thing to be careful of: all graphics data must print on the same line. The graphics command is turned off at the end of each line, even if you have specified that more graphics codes follow. To see what we mean, change line 30 to plot 1000 points and run the program.

30 WID $=10 \not \emptyset \emptyset$


This will make the sine wave pattern long enough to go off the page.

As you can see, Radix printed graphics up to the end of the line, then ignored the rest of the graphics data and returned to normal text on the next line.

## Printing a Design or Logo

Since you control the firing of every pin, you can print nearly anything with Radix that you can draw (and probably better, if you're like most computer users!). This can be used for creating "computer art" or drawing maps. Or, as we'll show you here, you can use dot graphics to print your logo at the top of each letter you print.

Designing an image to print with dot graphics is much like designing download characters. The best way to start is to lay out your image on graph paper. Since you can print eight rows (seven with a 7 -bit interface) of dots with each pass of the print head, draw a heavy horizontal line every eight rows on your graph paper. And it may be helpful to write the dot values (128, 64, 32, etc.) down the left side of each row. Then after you've filled in the "dots" that you want to print, it's time to get out the old calculator again! Just as you did with download characters, add up the values of each column of dots; this makes up one byte.

In the program below, we've taken the logo graphics information and put it into BASIC DATA statements. The program itself is short and simple. The loop starting at line 100 reads the data statements into a string array variable called LOGO\$. In line 170 we change the line spacing to $8 / 72$ inch so that the lines of graphics data will connect vertically. The actual printing is done in the loop between lines 180 and 210; line 190 sends the graphics control code to Radix and line 200 sends one line of graphics data.

The printout from the program is shown right below the program.


## S <br> 

Figure 12-2. By laying out the logo on graph paper, you can calculate all of the graphics data.

```
10 'Prints S&S logo.
2\emptyset LINE.8$ = CHR$(27)+CHR$(65)+CHR$(8)
30}\mathrm{ 'Set line spacing to 1/6"
40 LINE.12$ = CHR$(27)+CHR$(5\emptyset)
50 'Select dot graphics
60 GRAPHIC$ = CHR$(27)+CHR$(75)
70 DIM LOGO$(4)
80 WIDTH "LPT1:",255
90 ' READ DATA
100 FOR ROW = 1 TO 4
11\emptyset FOR COLUMN = 1 TO 1\emptyset\emptyset
12\emptyset READ P
13\emptyset LOGO$(ROW) = LOGO$(ROW) + CHR$(P)
14\varnothing NEXT COLUMN
150 NEXT ROW
160 ' PRINT LOGO
17\emptyset LPRINT LINE.8$;
18\emptyset FOR ROW = 1 TO 4
19\emptyset LPRINT GRAPHIC$;CHR$(1\varnothing\emptyset);CHR$(\emptyset);
2\emptyset\emptyset LPRINT LOGO$(ROW)
210 NEXT ROW
```

$22 \emptyset$ LPRINT LINE. $12 \$$
230 'ROW 1
$24 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, 1,3,7,7,7,15$
250 DATA $14,14,14,14,14,7,7,3,3,15$
$26 \emptyset$ DATA $15,15, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$27 \emptyset$ DATA $\emptyset, 1,3,3,7,7,15,14,14,14$
$28 \emptyset$ DATA $14,15,7,7,7,3, \varnothing, \varnothing, \varnothing, \varnothing$
$29 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$3 \emptyset \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset$
$31 \emptyset$ DATA $\emptyset, \emptyset, \emptyset, \emptyset, 1,3,7,7,7,15$
$32 \emptyset$ DATA $14,14,14,14,14,7,7,3,3,15$
$33 \emptyset$ DATA $15,15, \varnothing, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing$
$34 \emptyset$ ' ROW 2
$35 \emptyset$ DATA $\emptyset, \emptyset, 6 \emptyset, 255,255,255,255,255,143,15$
360 DATA 7,7,7,7,3,3,3,131,193,241
$37 \emptyset$ DATA $24 \varnothing, 24 \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1$
380 DATA $121,253,253,255,255,255,143,7,7,7$
390 DATA $31,253,252,248,248,240,192, \varnothing, 7,15$
$4 \emptyset \emptyset$ DATA $31,31,15,7,3, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset$
$41 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \varnothing$
$42 \emptyset$ DATA $\emptyset, \emptyset, 6 \emptyset, 255,255,255,255,255,143,15$
430 DATA $7,7,7,7,3,3,3,131,193,241$
$44 \emptyset$ DATA $24 \varnothing, 24 \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing$
450 'ROW 3
$46 \emptyset$ DATA $\emptyset, 31,31,3,129,128,192,192,192,192$
$47 \emptyset$ DATA 192,224,224,224,224,240,255,255,255,255
$48 \emptyset$ DATA $255,127, \emptyset, \emptyset, \emptyset, \emptyset, 63,127,255,255$
$49 \emptyset$ DATA $255,255,193,128,128,128,128,192,224,24 \varnothing$
$50 \emptyset$ DATA $252,255,255,255,127,63,31,7,7,31$
$51 \emptyset$ DATA $254,252,248,224,128, \varnothing, \emptyset, 3,7,7$
$52 \emptyset$ DATA $7,3, \emptyset, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing$
$53 \emptyset$ DATA $\emptyset, 31,31,3,129,128,192,192,192,192$
$54 \emptyset$ DATA $192,224,224,224,224,24 \emptyset, 255,255,255,255$
$55 \emptyset$ DATA $255,127, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing$
560 'ROW 4
$57 \emptyset$ DATA $\emptyset, 248,248,24 \emptyset, 224,224,112,112,56,56$
$58 \emptyset$ DATA $56,56,56,12 \emptyset, 12 \emptyset, 24 \emptyset, 24 \emptyset, 224,224,192$
$59 \varnothing$ DATA $128, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, 192,224,24 \emptyset, 24 \emptyset$
$60 \emptyset$ DATA $24 \emptyset, 248,248,248,12 \emptyset, 12 \emptyset, 56,56,56,56$
610 DATA $48,112,224,224,224,224,24 \emptyset, 24 \emptyset, 248,248$
$62 \emptyset$ DATA $12 \emptyset, 12 \emptyset, 56,56,56,56,12 \emptyset, 24 \emptyset, 224,224$
$63 \emptyset$ DATA $192,128, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, \emptyset, \varnothing, \varnothing$
$64 \emptyset$ DATA $\varnothing, 248,248,24 \varnothing, 224,224,112,112,56,56$

650 DATA $56,56,56,12 \emptyset, 12 \emptyset, 24 \emptyset, 24 \emptyset, 224,224,192$
$66 \emptyset$ DATA $128, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing$

## S\&S

## Plotting with Radix

This section of the manual gets into more serious BASIC programming just because it's required in order to have the computer act as a plotter driver. Don't be intimidated; while it's beyond the scope of this manual to teach BASIC, if you try the examples and take it slowly you should be doing some fancy plotting of your own before you know it.

If designing and calculating dot graphics images by laying them out on graph paper seems too tedious to you, then let the computer do the work for you! With your computer doing the calculations and Radix plotting the output, you can come up with some terrific business graphs, charts, and mathematical function plots.

The best way to do this is to set up an array in memory. This is your "graph paper." The first thing to do is to determine how big you want your output to be; this will determine the size of your array. (If you have grandiose plans to fill an entire page with plotter output, you better have lots of memory in your computer. With 60 dots per inch horizontally and 72 dots per inch vertically, it takes at least 540 bytes of memory for each square inch of plotted area. That doesn't sound so bad-but an area 8 inches square requires over 32 K !)

Your array should be two-dimensional (just like graph paper) where one dimension will be the number of columns of dots and the other dimension is the number of printing lines (remember that you can have up to eight rows of dots per printed line).

Here's a program that will use calculated-shape graphics to plot a circle. As you'll see, by changing a few lines it can be used to plot virtually any shape.

30 'Set program constants.
$40 \mathrm{MAXCOL} \%=75 \quad:$ MAXROW\% $=14$

```
50 DIM BIT%(MAXCOL%,MAXROW%)
60 MASK%(1) = 64 : MASK%(4) = 8
7\varnothing MASK%(2) = 32 : MASK%(5) = 4
80 MASK%(3) = 16 : MASK%(6) = 2
90 LX = 2\emptyset : LY = 2\emptyset
100 LXFAC = 72/LX : LYFAC = 87/LY
110 '
12\emptyset 'Plot curve.
130 GOSUB 60\emptyset
140'
150 'Send bit image map to printer.
160 LPRINT CHR$(27) "A" CHR$(6)
17\emptyset FOR ROW% = \emptyset TO MAXROW%
180 A$ = ""
19\varnothing LPRINT CHR$(27) "K" CHR$(MAXCOL%) CHR$(}\varnothing\mathrm{);
200 FOR COL% = 1 TO MAXCOL%
210 A$ = A$ + CHR$(BIT%(COL%,ROW%))
220 NEXT COL%
23\emptyset LPRINT A$ " "
24\varnothing NEXT ROW%
250 LPRINT CHR$(27) "2"
260 END
270
28\emptyset 'Subroutine to draw a line from X1,Y1 to X2,Y2.
290'
300 XL = X2 - X1 : YL = Y2 - Y1
310NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
32\emptyset IF NX < NY THEN NX = NY
330 NS% = INT(NX+1)
340 DX = XL/NS% : DY = YL/NS%
350 FOR I% = 1 TO NS%
360 X1 = X1 + DX : Y1 = Y1 + DY
370 GOSUB 40\emptyset
380 NEXT I%
390 RETURN
400 '
410 'Subroutine to plot a point at X1,Y1.
420
430 XX = X1 * LXFAC : YY = Y1 * LYFAC
440 COL% = INT(XX) + 1
450 ROW% = INT(YY/6)
46\emptyset XIT% = INT(YY - ROW% * 6)+1
47\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR MASK%(XIT%)
4 8 \| ~ R E T U R N
```

```
6 0 0
610 ' Subroutine to plot a circle
62ø
630 RAD = c,
640 X1 = 19 : Y1 = 10
650 FOR ANG% = \emptyset TO 36\emptyset STEP 1\varnothing
660 RANG = ANG%*6.28/36\emptyset
67\varnothing X2 = RAD*COS(RANG)+1\emptyset : Y2 = RAD*SIN(RANG)+1\emptyset
6 8 0 \text { GOSUB 27ø}
690 NEXT ANG%
7 9 0 \text { RETURN}
```


## How the program works

In the program above, we've created an array called BIT\%, which is dimensioned in line 50 . You'll note that instead of

using numeric constants to dimension the array, we used the variables MAXCOL $\%$ and MAXROW\%. This way, if your computer has enough memory and you want to plot a larger image, all you need to change are the values in line 40. The array MASK\% contains the values of the dots. (In order to make this program run on the most computers, we're using only six pins for graphics. With many computers, you can use all eight available pins.) In lines 90 and 100 we've defined some other variables you'll be interested in: LX, LXFAC, LY, and LYFAC are used as scaling factors. By changing these values, you can change the size of your printed image or even distort it (you can, for example, make our circle print as an ellipse). Experiment a little bit!

The main calculations for plotting the image are done in the subroutine starting at program line 600 . This is where you put the formulas that you want to plot. By changing just the lines after 600 (with some creative mathematics!) you can plot any functionlimited only by your imagination. Some examples are shown at the end of this section.

What the program section starting at line 600 actually does is to calculate starting and ending points for a line (in our circle the "lines" are very short-sometimes the starting and ending points are the same). The coordinates of the starting point of the line are assigned to variables X1 and Y1. The line ends at point X2,Y2. When these coordinates have been calculated, a subroutine call is made to line 270. This subroutine calculates the coordinates of individual points along that line.

After these coordinates have been determined, the subroutine at line 400 is called. This routine turns "on" an individual dot in our array called BIT\%. (Keep in mind that no printing has been done yet; the computer is still drawing the image on its "graph paper" in memory.) The way an individual dot is turned on is using the logical OR function in line 470.

When all the points have been plotted in memory, printing begins at line 150 . We first set the line spacing to $6 / 72$ inch using the 〈ESC〉 " $A$ " command. This is so that there are no gaps between rows of dots. Then the loop from line 170 to line 240 prints the dot graphics image one line (which is six dots high) at a time. The variable $\mathrm{A} \$$ is used to build a string of all the columns of BIT\% in a given row.

As you can see, by taking the program in small pieces and analyzing it, graphics programming does not have to be difficult. If you want to try some other plots, try these (replace lines after 600 with the lines below). The printouts from each program are shown below the listing.

```
600
610 'Subroutine to plot a star.
620 '
63\emptyset RAD = 9
64\emptyset FOR ANG% = \emptyset TO 36\emptyset STEP 45
65\emptyset RANG = ANG% * 3.14159 / 18\emptyset
660 RANG2 = (ANG% + 135)* 3.14159 / 18\emptyset
670 X1 = RAD * COS(RANG) + 10
68\emptyset Y1 = RAD * SIN(RANG) + 10
690 X2 = RAD * COS(RANG2) + 10
70\emptyset Y2 = RAD * SIN(RANG2) + 10
71\varnothing GOSUB 27\varnothing
72\emptyset NEXT ANG%
730 RETURN
```



600
610 'Subroutine to plot a sine wave.
620
$63 \emptyset \mathrm{X} 1=\varnothing: \mathrm{Y} 1=1 \emptyset: \mathrm{X} 2=2 \emptyset: \mathrm{Y} 2=1 \varnothing$
$64 \emptyset$ GOSUB $27 \emptyset$
$65 \emptyset \mathrm{X} 1=1 \emptyset: \mathrm{Y} 1=\emptyset: \mathrm{X} 2=1 \emptyset: \mathrm{Y} 2=2 \emptyset$
660 GOSUB 270
$67 \emptyset \mathrm{X1}=\varnothing: \mathrm{Y} 1=1 \emptyset$
$68 \emptyset$ FOR X2 $=\emptyset$ TO $2 \emptyset$ STEP .2
$69 \emptyset \mathrm{Y} 2=1 \emptyset-9 * \operatorname{SIN}(3.14159 * \mathrm{X} 2 / 1 \emptyset):$ GOSUB $27 \emptyset$
700 NEXT X2
710 RETURN


## Using Radix for business graphics

You don't have to be a mathematician, scientist, or computer hacker/artist to use Radix's graphics capabilities. It can be used for business graphics too-line graphs, bar charts, pie charts, and more! There are many commercially available graphics programs that support Radix's graphics. And, of course, you can write your own. To get you started, we've written a program that prints a pie chart. Here it is:

10 'Program to print a piechart on the RADIX.
$2 \emptyset^{\prime}$
30 'Initialize program constants.
$4 \emptyset \mathrm{ESC} \$=\operatorname{CHR} \$(27): \mathrm{LF} \$=\operatorname{CHR} \$(1 \varnothing)$
$5 \emptyset \mathrm{FF} \$=\operatorname{CHR} \$(12) \quad: \operatorname{VTAB} \$=\operatorname{CHR} \$(11)$
$6 \emptyset \operatorname{REVFF} \$=\mathrm{ESC} \$+\mathrm{FF} \$$
$7 \emptyset$ 'Emphasized \& expanded modes.
$8 \emptyset$ TITLE. $\mathrm{ON} \$=\mathrm{ESC} \$+\mathrm{EE}$ + $\mathrm{ESC} \$+" \mathrm{~W} "+\operatorname{CHR} \$(1)$
$9 \emptyset$ TITLE.OFF $\$=\mathrm{ESC} \$+$ "F" $+\mathrm{ESC} \$+$ "W" $+\mathrm{CHR} \$(\varnothing)$
$10 \emptyset$ OPEN "LPT1:" AS \#1 : WIDTH \#1,255
$11 \varnothing$ DIM BIT\% $(190,36)$, A\$ $(36)$, PCT\% (25)
$12 \emptyset$ DIM TEXT\$(48),PIECETEXT\$(25)
$13 \emptyset \operatorname{MASK} \%(1)=64: \operatorname{MASK} \%(4)=8$
$14 \varnothing$ MASK\% (2) $=32 \quad: \operatorname{MASK} \%(5)=4$
$15 \emptyset \operatorname{MASK} \%(3)=16 \quad: \operatorname{MASK} \%(6)=2$
$16 \emptyset \mathrm{LX}=2 \emptyset \quad: L Y=2 \emptyset$
$17 \emptyset$ LXFAC $=190 / L X \quad:$ LYFAC $=216 / L Y$
$18 \emptyset$ FOR $I=\emptyset \mathrm{TO} 48$
190 TEXT (I) $=$ SPACE $\$(79)$
$2 \not 00$ NEXT I
210 GOSUB 1040
$22 \emptyset$
230 ' Plot curve
$24 \varnothing \mathrm{RAD}=9$
$250 \mathrm{X1}=19 \quad: \mathrm{Y} 1=10$
$27 \emptyset$ FOR ANG\% $=\varnothing$ TO $36 \emptyset$ STEP 12
280 RANG $=$ ANG\%*6.28/36
$29 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{RANG})+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{RANG})+1 \emptyset$
390 GOSUB $64 \varnothing$
310 NEXT ANG\%
$32 \emptyset$ FOR PIECE\% = 1 TO NUMBER.PIECES\%
$33 \emptyset \mathrm{X} 1=1 \emptyset \quad: Y 1=1 \emptyset$
$34 \emptyset$ TOTAL.PCT\%=TOTAL.PCT\%+PCT\% (PIECE\%)
$35 \emptyset$ ANG\% $=36 \emptyset * T O T A L . P C T \% * . ~ .01$
$36 \emptyset$ RANG $=$ ANG\%*6.28/36 0
$37 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{RANG})+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{RANG})+1 \emptyset$
$38 \emptyset$ GOSUB $64 \varnothing$
390 GOSUB $87 \emptyset$
400 NEXT PIECE\%
410
$42 \emptyset$ 'Send chart title to printer.
440 LPRINT ESC $\$$ "A" CHR\$(6) REVFF\$ VTAB\$ ;
$45 \emptyset$ LPRINT TITLE. $0 N \$$ SPACE $\$(2 \emptyset$-LEN(TITLE $\$) / 2)$;

```
460 LPRINT TITLE$ TITLE.OFF$
47\varnothing LPRINT VTAB$ VTAB$;
48\varnothing FOR I = }\emptyset\mathrm{ TO 48
490 LPRINT TEXT$(I) : NEXT I
500 '
510 'Send bit image map to printer.
52\emptyset LPRINT REVFF$ VTAB$ VTAB$ VTAB$;
530 LPRINT LF$ LF$ LF$ LF$ LF$ LF$
540 FOR ROW% = \emptyset TO 35
5 5 0 \text { LPRINT " " ;}
560 LPRINT ESC$ "K" CHR$(190) CHR$(}0)
570 FOR COL% = 1 TO 190
58\emptyset PRINT#1, CHR$(BIT%(COL%,ROW%)) ; : NEXT
590 PRINT#1, LF$
60\emptyset PRINT CHR$(176) CHR$(176);
610 NEXT ROW%
620 LPRINT ESC$ "2" FF$
6 3 0 \text { END}
640'
650 'Subroutine to draw a line from X1,Y1 to X2,Y2.
600 '
670 XL = X2 - X1 : YL = Y2 - Y1
680 NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
690 IF NX (NY THEN NX = NY
70\emptyset NS% = INT(NX+1)
710 DX = XL/NS% : DY = YL/NS%
720 FOR I% = 1 TO NS%
730 X1 = X1 + DX : Y1 = Y1 + DY
74\emptyset GOSUB 78\emptyset
750 NEXT I%
76\emptyset PRINT CHR$(29) CHR$(205) CHR$(205) CHR$(175);
77Ø RETURN
780
790 'Subroutine to plot a point at X1,Y1.
800 '
810 XX = X1 * LXFAC : YY = Y1 * LYFAC
82\emptyset COL% = INT(XX) + 1
830 ROW% = INT(YY/6)
84\emptyset XIT% = INT(YY - ROW% * 6)+1
850 BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR MASK%(XIT%)
860 RETURN
870
88\emptyset 'Subroutine to arrange field descriptions.
890
```

```
90\emptyset MIDANG%=(ANG%+PREVANG%)/2
91\emptyset RANG = MIDANG%*6.28/36\emptyset
92\emptyset X3 = INT(24*SIN(RANG)+.5): Y3 = INT(2\emptyset*COS(RANG))
930 X4 = 24 + X3 : Y4 = 42 + Y3
94\emptyset IF (MIDANG% > 7\emptyset AND MIDANG% (11\emptyset) THEN 99\emptyset
950 IF (MIDANG% > 250 AND MIDANG% (290) THEN 990
96\emptyset IF MIDANG%>27\emptyset OR MIDANG%<9\emptyset THEN 101\emptyset
97\emptyset MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%)))
 =PIECETEXT$(PIECE%)
980 GOTO 1\emptyset2\emptyset
990 MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%))/2)
 =PIECETEXT$(PIECE%)
1\emptyset\emptyset\emptyset GOTO 1\emptyset2\emptyset
1010 MID$(TEXT$(X4),Y4) = PIECETEXT$(PIECE%)
102\emptyset PREVANG%=ANG%
1030 RETURN
1040 '
1050 'Subroutine to query user for data.
1060 '
107\emptyset CLS: PRINT : PRINT : PRINT :
1080 INPUT "ENTER TITLE FOR CHART: ",TITLE$
1090 IF LEN(TITLE$) <= 40 THEN 111\emptyset
11\emptyset\emptyset PRINT "TITLE TOO LONG - 4\emptyset CHAR. MAX" : GOTO 108\emptyset
111\emptyset AMT.SOFAR%=\emptyset : AMT.LEFT%=1\emptyset\emptyset
1120 FOR I=1 TO 24
1130 CLS
1140 PRINT " ENTER PARAMETERS FOR
 PIECHART"
115\emptyset PRINT " TOTAL SO FAR : ";
116\emptyset PRINT USING "###";AMT.SOFAR%
117\emptyset PRINT " TOTAL REMAINING: ";
118\emptyset PRINT USING "###";AMT.LEFT%
119\emptyset PRINT :PRINT :PRINT :PRINT
120\emptyset INPUT "ENTER PERCENTAGE FOR FIELD: ",PCT%(I)
121\emptyset IF PCT%(I)>AMT.LEFT% OR PCT%(I)=\varnothing THEN
 PCT%(I)=AMT.LEFT%
122\emptyset AMT.LEFT%=AMT.LEFT%-PCT%(I)
123\emptyset AMT.SOFAR%=AMT .SOFAR%+PCT%(I)
1240 PRINT :PRINT
125\emptyset INPUT "ENTER DESCRIPTION OF FIELD:
 ",PIECETEXT$(I)
1260 IF LEN(PIECETEXT$(I))<16 THEN 128\emptyset
1270 PRINT "FIELD TOO LONG - 15 CHAR. MAX": GOTO 125\emptyset
128\emptyset IF AMT.IEFT%=\emptyset THEN 13\emptyset\emptyset
```

1290 NEXT I
$130 \emptyset$ NUMBER．PIECES\％＝$=$
$131 \emptyset$ IF NUMBER．PIECES\％＝1 THEN $111 \emptyset$
1320 CLS
1330 RETURN

You should recognize many sections of code from the plotting program．We＇ve expanded on that program framework to include routines for inputting data to be graphed and placing labels next to the pie chart．We＇ve used a feature of Radix to simplify pro－ gramming and speed up the program：a reverse form feed．The program calculates locations and prints all of the labels．When the labels are done，a reverse form feed to the top of the sheet prepares Radix for the graphics data．

The output from our program is shown below．

Nationai League Wmat Attendance－1アプ


Cincinnati

## High Resolution Graphics

Up until now ail of the dot graphics printing we have done has been with Radix's normal density mode. This can give you some pretty sharp images at great speed. Sometimes though, you may want to create an image with even higher resolution. Radix has four graphics modes you can use; they're summarized in Table 12-2.

Table 12-2
Dot graphics commands

| Function | Control code |
| :--- | :--- |
| Normal density (60 dots/inch) | $\langle E S C\rangle$ "K" 1 1 n2 m1 m2 $\ldots$ |
| Double density (120 dots/inch) | $\langle E S C\rangle$ "L" n1 n2 m1 m2 $\ldots$ |
| Double density/double speed | $\langle E S C\rangle$ "y" n1 n2 m1 m2 ... |
| Quadruple density (240 dots/inch) | $\langle E S C\rangle " z " n 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$ |

Note: If your computer does not support lowercase characters, use CHR\$(121) and CHR\$(122) for " $y$ " and " $z$ ", respectively.

The command syntax for all of the commands is the samejust as you have learned it for the 〈ESC〉 "K" (normal density) command. The number of columns to be printed is $n 1+256 * n 2$.

So what do these different modes do? On the following pages are actual size reproductions of printouts of the same image printed in each of the four different graphics modes. They were all printed using the plotting program in this chapter (with a rather complex set of formulas starting at line 600!).


Normal density graphics


Quadruple density graphics

So if quadruple density looks so great, why not use it all the time? Let's try an experiment on your printer which will show just how the different density modes work. Using the first program in this chapter, change line 50 to try each of the different modes. Just change the " $K$ " to " $L$ ", " $y$ ", and " $z$ " in turn. Your printouts should look something like this:

(ESC)"L"

(ESC)"y"


〈ESC)"z"

As you can see, the different modes seem to condense the printed image. So, to get the same image in a higher density mode, you must plot more points. This requires twice as much memory for your array, twice as much computing time, and twice as much printing time (but the results may be worth $i t!$ ).

Star's engineers have given programmers a unique shortcut for program development though-double density double speed graphics. Although this mode requires just as much memory and computing time as double density, it prints at the same speed as normal density graphics. Amazing, you say? Well, it is-until you know the secret. Every other column of dots is ignored, so the output is actually the same as normal density graphics. The advantage is that you can write and debug your programs at double speed, then change to double density graphics for terrific output.

## If You Have Problems with BASIC

You may write some graphics programs that look just right in the listing, but the printouts aren't quite what you expected. A
common problem is that the BASIC interpreter in your computer is inserting a few of its own codes. For instance, if your program generates a CHR\$(13) as valid graphics data, BASIC may follow it with a CHR\$(10). Another problem arises with certain computers that replace horizontal tabs (CHR\$(9)) with a series of spaces (CHR\$(32)). A possible solution to these problems is to not use the bottom dot (which has a value of 1). This way, you will never produce an odd number, hence, you will never have a CHR\$(13) or CHR\$(9). (This is why we used only six pins in our plotting program.)

That's one solution to one problem. You'll find more of each (with specific information for your computer) in the appropriate appendix.

## Summary

| Control code | Function |
| :--- | :--- |
| $\langle\mathrm{ESC}\rangle$ " K " $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$ | Print $\mathrm{n} 1+256 * \mathrm{n} 2$ columns of nor- |
| mal density graphics |  |



Chapter 13

## Putting Radix to Work For You

If you've followed us this far, you've learned a lot about your Radix printer-how to use its myriad of type styles, sizes, line spacing options, character sets, margins, tabs, and more. Perhaps you've even created some download characters (maybe using the utility program in Chapter 11).

Now, as your reward (as if the knowledge of how to use all these features wasn't enough!) for reading this entire manual, we have one more utility program for you. With this program you can set many of Radix's print parameters with just a few keystrokes. No more writing a short program each time you want to change the print style to NLQ, for example. All you will need to do is type "RUN 〈return> 1100" and it's done-the program is completely menu-driven.

## Table 13-1 <br> Menus of Radix setup program



It may take a while to enter it, but we think that in the long run, this program will save you time when you want to set margins or tabs or any of Radix's other advanced features. Enjoy!

```
1\varnothing 'Program to setup RADIX printer as directed.
2\emptyset'
3\emptyset 'Initialize.
4\emptyset ESC$ = CHR$(27) : TB = 25 : DIM TBS(256)
50 OPEN "lpt1:" AS #1 : WIDTH #1, 255 : KEY OFF
60'
70 'Display MAIN menu.
8\emptyset TITLE$ = "MAIN MENU"
90 GOSUB 2290
1\emptyset\emptyset PRINT TAB(TB) "\emptyset. Exit."
11\varnothing PRINT TAB(TB) "1. Select CHARACTER SET."
12\emptyset PRINT TAB(TB) "2. Select PRINTING MODES."
130 PRINT TAB(TB) "3. Select PITCH."
14\emptyset PRINT TAB(TB) "4. Select LINE SPACING."
15\emptyset PRINT TAB(TB) "5. Set MARGINS, TABS & FORMS."
160 GOSUB 238\emptyset
17\emptyset IF S<\emptyset OR S>5 THEN BEEP : GOTO 16\emptyset
18\emptyset IF S = }\emptyset\mathrm{ THEN CLOSE #1 : CLS : END
19\emptyset ON S GOSUB 21\emptyset,48\emptyset,35\emptyset,124\emptyset,64\emptyset
2\emptyset\emptyset GOTO 6\emptyset
21\varnothing
22\emptyset 'Subroutine to display CHARACTER SET menu.
23\emptyset TITLE$ = "CHARACTER SET MENU"
24\emptyset GOSUB 229\emptyset
25\emptyset PRINT TAB(TB) "\emptyset. Return to main menu."
26\emptyset PRINT TAB(TB) "1. Select NLQ character set."
27\emptyset PRINT TAB(TB) "2. Cancel NLQ character set."
28\emptyset PRINT TAB(TB) "3. Select ITALIC character set."
290 PRINT TAB(TB) "4. Cancel ITALIC character set."
300 GOSUB 2380
31\emptyset IF S<\emptyset OR S>4 THEN BEEP : GOTO 30\emptyset
32\emptyset IF S = \emptyset THEN RETURN
33\emptyset ON S GOSUB 118\emptyset,121\emptyset,159\emptyset,162\emptyset
340 GOTO 210
350
360 'Subroutine to display PITCHES menu.
37\emptyset TITLE$ = "PITCHES MENU"
380 GOSUB 229\varnothing
```

```
390 PRINT TAB(TB) "\emptyset. Return to main menu."
4 0 0 ~ P R I N T ~ T A B (T B) ~ " 1 . ~ S e l e c t ~ P I C A ~ p i t c h . " ~
410 PRINT TAB(TB) "2. Select ELITE pitch."
42\varnothing PRINT TAB(TB) "3. Select CONDENSED pitch."
4 3 0 \text { GOSUB 238ø}
44\varnothing IF S<\emptyset OR S>3 THEN BEEP : GOTO 43\varnothing
4 5 \emptyset ~ I F ~ S ~ = ~ \emptyset ~ T H E N ~ R E T U R N
46\emptyset ON S GOSUB 82\emptyset,85\emptyset,88\emptyset
47\varnothing GOTO 35\varnothing
480'
490 'Subroutine to display PRINTING MODES menu.
50\emptyset TITLE$ = "PRINTING MODES MENU"
5 1 0 \text { GOSUB 2290}
52\emptyset PRINT TAB(TB) " }\varnothing\mathrm{ . Return to main menu."
530 PRINT TAB(TB) "1. Select EXPANDED mode."
540 PRINT TAB(TB) "2. Cancel EXPANDED mode."
550 PRINT TAB(TB) "3. Select EMPHASIZED mode."
560 PRINT TAB(TB) "4. Cancel EMPHASIZED mode."
57\emptyset PRINT TAB(TB) "5. Select DOUBLE-STRIKE mode."
58\varnothing PRINT TAB(TB) "6. Cancel DOUBLE-STRIKE mode."
590 GOSUB 2380
60\emptyset IF S<\emptyset OR S>6 THEN BEEP : GOTO 59\varnothing
61\varnothing IF S = }\varnothing\mathrm{ THEN RETURN
62\emptyset ON S GOSUB 153\emptyset,1560,217\emptyset,220\emptyset,2230,226\emptyset
6 3 \varnothing \text { GOTO 48Ø}
640 '
65\emptyset 'Subroutine to display MARGINS, TABS & FORMS menu.
66 TITLE$ = "MARGINS, TABS & FORMS MENU"
6 7 0 \text { GOSUB 2290}
68\emptyset PRINT TAB(TB) "\emptyset. Return to main menu."
690 PRINT TAB(TB) "1. Set HORIZONTAL TABS."
70\emptyset PRINT TAB(TB) "2. Set VERTICAL TABS."
710 PRINT TAB(TB) "3. Set LEFT MARGIN."
72\emptyset PRINT TAB(TB) "4. Set RIGHT MARGIN."
73\emptyset PRINT TAB(TB) "5. Set TOP MARGIN."
74\varnothing PRINT TAB(TB) "6. Set BOTTOM MARGIN."
750 PRINT TAB(TB) "7. Cancel TOP & BOTTOM MARGINS."
760 PRINT TAB(TB) "8. Set PAGE LENGTH."
770 GOSUB 238\emptyset
78\emptyset IF S<\emptyset OR S>8 THEN BEEP : GOTO 77\emptyset
79\emptyset IF S = \emptyset THEN RETURN
89\emptyset ON S GOSUB 182\emptyset,213\emptyset,91\emptyset,97\emptyset,1\varnothing3\emptyset,1090,115\emptyset,165\emptyset
81\varnothing GOTO 64ø
```

$82 \varnothing$
830 ＇Subroutine to select PICA pitch．
$84 \varnothing$ S\＄＝ESC $\$+$＂ $\mathrm{B} "+\mathrm{CHR} \$(1)$ ：GOSUB $246 \emptyset$ ：RETURN 850
$86 \emptyset$＇Subroutine to select ELITE pitch．
$87 \emptyset$ S\＄＝ESC $\$+$＂B＂+ CHR\＄（2）：GOSUB $246 \emptyset:$ RETURN
880
$89 \emptyset$＇Subroutine to select CONDENSED pitch．
990 S\＄＝ESC $\$+$＂B＂+ CHR\＄（3）：GOSUB $246 \emptyset:$ RETURN 910
920 ＇Subroutine to set LEFT MARGIN．
930 GOSUB $25 \varnothing 0$
940 INPUT＂Enter new left margin（1－255）＂；X
950 IF X＜ 1 OR X 〉 255 THEN BEEP ：GOTO 930
$96 \emptyset$ S\＄＝ESC $\$+$＂M＂+ CHR $\$(X):$ GOSUB $246 \emptyset:$ RETURN
970
$98 \emptyset$＇Subroutine to set right MARGIN
990 GOSUB 2500
$19 \varnothing \emptyset$ INPUT＂Enter new right margin（1－255）＂；X
$1 \varnothing 1 \varnothing$ IF X＜ 1 OR X＞ 255 THEN BEEP ：GOTO 99ø
$1 \varnothing 2 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{Q} Q \mathrm{C}+\mathrm{CHR} \$(\mathrm{X}):$ GOSUB $246 \emptyset:$ RETURN 1030
1040 ＇Subroutine to set TOP MARGIN．
1050 GOSUB 2500
1960 INPUT＂Enter new top margin（1－16）＂；X
1070 IF X＜ 1 OR X 〉 16 THEN BEEP ：GOTO 1050
$1080 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{R}$＂$+\mathrm{CHR} \$(\mathrm{X}):$ GOSUB $2460:$ RETURN 1090
1100 ＇Subroutine to set BOTTOM MARGIN．
1110 GOSUB 250ø
$112 \emptyset$ INPUT＂Enter new bottom margin（1－127）＂；X
$113 \emptyset$ IF X＜ 1 OR X 〉 127 THEN BEEP ：GOTO 111ø
1140 S\＄＝ESC\＄＋＂N＂＋CHR\＄（X）：GOSUB 2460 ：RETURN 1150
1160 ＇Subroutine to CANCEL TOP \＆BOTTOM MARGINS．
$117 \emptyset$ S\＄＝ESC $\$+$＂ 0 ＂：GOSUB $246 \varnothing$ ：RETURN
$118 \varnothing$
$119 \varnothing$＇Subroutine to select NLQ character set．
1290 S\＄＝ESC\＄＋＂B＂＋CHR\＄（4）：GOSUB 2460 ：RETURN $121 \varnothing$
$122 \emptyset$＇Subroutine to cancel NLQ character set．
1230 S\＄＝ESC $\$+$＂B＂$+\operatorname{CHR} \$(5)$ ：GOSUB $246 \varnothing$ ：RETURN 1240

1250 'Subroutine to select LINE SPACING.
1260 TITLE $\$=$ "LINE SPACING MENU"
$127 \emptyset$ GOSUB 2290
$128 \emptyset$ PRINT TAB(TB) " $\emptyset$. Return to main menu."
$129 \varnothing$ PRINT TAB(TB) "1. Select $1 / 6$ inch line spacing."
1300 PRINT TAB(TB) "2. Select $1 / 8$ inch line spacing."
1310 PRINT TAB(TB) "3. Select 7 dot graphics spacing."
$132 \emptyset$ PRINT TAB(TB) "4. Select $n / 144$ inch spacing."
1330 GOSUB $238 \emptyset$
$134 \emptyset$ IF $S\langle\emptyset$ OR $S\rangle 4$ THEN BEEP : GOTO $133 \emptyset$
$135 \emptyset$ IF $S=\emptyset$ THEN RETURN
$136 \emptyset$ ON S GOSUB $138 \emptyset, 141 \emptyset, 144 \emptyset, 147 \emptyset$
1370 GOTO 124ø
1380
1390 'Subroutine to select $1 / 6$ inch line spacing.
$140 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+$ "2" : GOSUB $246 \emptyset$ : RETURN
$141 \varnothing{ }^{\prime}$
$142 \emptyset$ 'Subroutine to select $1 / 8$ inch line spacing.
1430 S\$ = ESC $\$+$ " $\emptyset ":$ GOSUB $246 \emptyset$ : RETURN
$1440^{\prime}$
$145 \emptyset$ 'Subroutine to select 7 dot graphics spacing.
1460 S\$ = ESC \$ + "1" : GOSUB $246 \varnothing$ : RETURN
1470 '
$148 \emptyset$ 'Subroutine to select $\mathrm{n} / 144$ inch line spacing.
1490 GOSUB 2590
1500 INPUT "Enter line space in $1 / 144$ ths of an inch"; $X$
$151 \varnothing$ IF X 〈 $\varnothing$ OR X 〉 255 THEN BEEP : GOTO $149 \varnothing$
$152 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{"} 3 \mathrm{l}+\mathrm{CHR} \$(\mathrm{X}):$ GOSUB $246 \emptyset:$ RETURN 1530 '
$154 \varnothing$ 'Subroutine to select EXPANDED print.
$155 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} \mid+\mathrm{CHR} \$(1):$ GOSUB $246 \emptyset:$ RETURN $1560^{\prime}$
1570 'Subroutine to cancel EXPANDED printing.
$158 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} \mid+\operatorname{CHR} \$(\varnothing):$ GOSUB $246 \emptyset:$ RETURN $1590{ }^{\prime}$
$160 \emptyset$ 'Subroutine to select ITALIC character set.
1610 S\$ = ESC\$ + "4" : GOSUB 2460 : RETURN 1620
1630 'Subroutine to cancel ITALIC character set.
1640 S\$ = ESC $\$+05 "$ : GOSUB $246 \emptyset$ : RETURN $165 \emptyset$
1660 'Subroutine to set PAGE LENGTH.
1670 GOSUB $250 \emptyset$

```
1680 PRINT "Page length in Inches or Lines (I,L)?"
1690 PRINT TAB(TB) ;
1700 A$ = INKEY$: IF A$ = "" THEN 17\emptyset0
1710 IF A$ = "I" OR A$ ="i" THEN 174\varnothing
172\emptyset IF A$ = "L" OR A$ ="I" THEN 178\emptyset
173\varnothing BEEP : GOTO 17\emptyset\emptyset
1740 INPUT "Length of page in inches (1-32)" ; X
1750 IF X < 1 OR X > 32 THEN BEEP : GOTO 167\emptyset
1760 S$ = ESC$ + "C" + CHR$(}0)+\operatorname{CHR$(X)
1770 GOSUB 2460 : RETURN
1780 INPUT "Length of page in lines (1-127)" ; X
179\emptyset IF X < 1 OR X > 127 THEN BEEP : GOTO 167\emptyset
1800 S$ = ESC$ + "C" + CHR$(X)
181\emptyset GOSUB 2460 : RETURN
182\emptyset '
183\emptyset 'Subroutine to set HORIZONTAL TABS.
1840 S$ = ESC$ + "D" : MAX = 255 : GOSUB 1850 : RETURN
1850 '
1860 'Subroutine to set tabs, either horiz or vert.
1870 GOSUB 250\emptyset
1880 PRINT "Would you like to set the tabs in"
1890 PRINT TAB(TB) "Regular intervals, or specify"
1990 PRINT TAB(TB) "each one Individually (R,I)"
1910 A$ = INKEY$: IF A$ = "" THEN 1910
1920 IF A$ = "R" OR A$ = "r" THEN 2\emptyset7\varnothing
1930 IF A$ = "I" OR A$ = "i" THEN 1950
194\varnothing BEEP : GOTO 185\emptyset
1950 PRINT : I = 2 : TBS(1) = -1
1960 PRINT TAB(TB) "Enter the list of tabs, in"
1970 PRINT TAB(TB) "ascending order. No more than" MAX
 "."
1980 PRINT TAB(TB) : INPUT "Enter a tab" ; TBS(I)
199| IF TBS(I) < }\varnothing\mathrm{ OR TBS(I) > 255 THEN 194 }
2\emptyset\emptyset\emptyset IF TBS(I) = \emptyset THEN I = 1 : GOTO 2\emptyset4\emptyset
2ø1\varnothing IF TBS(I) <= TBS(I-1) THEN 194\varnothing
202\emptyset I = I + 1 : IF I > MAX THEN 194\emptyset
2\emptyset30 GOTO 1980
2040 I = I + 1
2050 S$ = S$ + CHR$(TBS(I)) : IF TBS(I) 〈> \emptyset THEN 204\emptyset
2060 S$ = S$ + CHR$(}\varnothing):\mathrm{ GOSUB 2460 : RETURN
2070 PRINT : PRINT TAB(TB) ; : INPUT "Enter interval" ;
 X
2ø8\emptyset IF X (\emptyset OR X > 255 THEN 194\emptyset
2090 FOR I = 1 TO 255 STEP X
```

$21 \emptyset \emptyset$ MAX $=$ MAX $-1:$ IF MAX $=\emptyset$ THEN $212 \emptyset$
$211 \emptyset \mathrm{~S} \$=\mathrm{S} \$+\operatorname{CHR} \$(\mathrm{I}): \mathrm{NEXT} \mathrm{I}$
$212 \emptyset \mathrm{~S} \$=\mathrm{S} \$+\operatorname{CHR} \$(\varnothing):$ GOSUB $246 \emptyset: \operatorname{RETURN}$
$2130^{\prime}$
$214 \emptyset$ 'Subroutine to set VERTICAL TABS.
$215 \emptyset$ S\$ $=\mathrm{ESC} \$+$ "P" : MAX $=2 \emptyset:$ GOSUB $185 \emptyset$
$216 \emptyset$ RETURN
$217 \emptyset$
2180 'Subroutine to select EMPHASIZED printing.
2190 S\$ = ESC\$ + "E" : GOSUB 2460 : RETURN
$220 \square^{\prime}$
$221 \varnothing$ 'Subroutine to cancel EMPHASIZED printing.
$222 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{FF}$ : GOSUB $246 \emptyset:$ RETURN
$2230^{\prime}$
$224 \varnothing$ 'Subroutine to select DOUBLE-STRIKE printing.
$2250 \mathrm{~S} \$=\mathrm{ESC} \$+$ "G" : GOSUB 2460 : RETURN $226 \square^{\prime}$
$227 \varnothing$ 'Subroutine to cancel DOUBLE-STRIKE printing.
228 S\$ = ESC $\$+$ "H" : GOSUB $246 \emptyset$ : RETURN
2290
$230 \emptyset$ 'Subroutine to print a menu title.
2310 CLS
$232 \emptyset$ PRINT : PRINT : PRINT
2330 PRINT TAB(27) "--- RADIX PRINTER SETUP ---"
2340 PRINT
$235 \emptyset$ PRINT TAB((8 1 -LEN(TITLE $\$)) / 2)$ TITLE\$
2360 PRINT : PRINT
$237 \emptyset$ RETURN
$2380^{\prime}$
2390 'Subroutine to input menu selection.
2400 LOCATE 2 2,18 : PRINT "Enter selection or press P
for print sample."
$241 \emptyset$ C $\$=$ INKEY $\$$ : IF $C \$=" 1$ THEN $241 \emptyset$
2415 IF C $\$=" \mathrm{P} "$ OR $\mathrm{C} \$=\mathrm{pp}$ " THEN GOSUB $3 \emptyset \emptyset \emptyset:$ GOTO $238 \emptyset$
$242 \emptyset$ IF C\$ < " $\varnothing$ " OR C\$ 〉 "9" THEN BEEP : GOTO $241 \varnothing$
$2430 \mathrm{~S}=\mathrm{VAL}(\mathrm{C} \$)$
$244 \emptyset$ LOCATE 2 $0,18: \operatorname{PRINT} \operatorname{STRING} \$(5 \emptyset, " ")$
2450 RETURN
2460 '
$247 \varnothing$ 'Subroutine to output command string.
$248 \emptyset$ PRINT \#1, S\$ ;
2490 RETURN
25001
$251 \emptyset$ 'Subroutine to clear screen \& position cursor. $252 \emptyset$ CLS : LOCATE 1 $\emptyset, T B$ : RETURN 3090
$301 \varnothing$ ' Subroutine to print sample $302 \emptyset$ FOR I $=1$ TO 4 : FOR $J=33$ TO 126 3030 PRINT \#1, CHR $\$(\mathrm{~J})$;
$304 \varnothing$ NEXT : PRINT \#1, $\operatorname{CHR} \$(1 \varnothing)$ : NEXT $305 \emptyset$ RETURN


Chapter 14
Basic Maintenance
As almost any good mechanic will tell you, dust and heat are prime enemies of any mechanism, and Radix is no exception. The best maintenance is preventive. So, to start with, we hope you've found a clean, dust-free location with a comfortable temperature range for both you and your computer/printer system. Appendix A gives you further tips on locating Radix.

## Cleaning Radix

The second rule for long life is periodic cleaning. Both inside and outside of the case and covers respond gratefully to periodic
cleaning with a damp rag and alcohol. Do this whenever the case appears to be getting dirty, always being careful to avoid dripping alcohol on the printer mechanism.

To remove dust and paper lint from inside the tractor and printer areas, it's best to use a soft brush, but, be very, very careful not to bend or injure any electronic parts or wiring, as they are vulnerable to a heavy-handed touch.

Besides the periodic cleanings, the only other maintenance you'll likely encounter will be changing the ink ribbon cartridge, replacing a blown fuse, or replacement of the print head after a long period of use.

## Replacing the Ink Ribbon

When the printing gets too faint for comfortable reading, it's time for a new ink ribbon. By far the most convenient way is to simply replace the entire ribbon cartridge (Appendix A describes this procedure). After all, that's the purpose of the cartridge: to save time and messing with dirty ribbons.

It is possible, however, to buy a replacement ribbon and insert it yourself inside the original cartridge casing. The procedure for inserting a new ribbon into the old cartridge (not recommended for non-mechanical types!) is as follows.

1. First, obtain from your Radix dealer the correct type of ribbon "sub-cassette" (not spool-type ribbons used with some other printers).
2. Remove the ribbon cartridge from the printer by holding both ends and pulling straight up from the holder springs. (Refer to Appendix A for illustrations of installing ribbon cartridge.)
3. Pry open the cartridge cover with a thin-bladed screwdriver. Arrows in Figure 14-1 show the numerous slots for inserting a screwdriver.
4. Press hard against the end of the idler gear holder to make a gap between it and the ribbon drive gear, and remove the old ink ribbon sub-cassette. See Figure 14-2.
5. Clean out any dirt from inside and around the cartridge and around the ribbon drive gear.


Figure 14-1. Use a screwdriver to pry open the cartridge.


Figure 14-2. Replace the ribbon sub-cassette.
6. Remove the wrapping from the new ribbon sub-cassette, remove the adhesive tape attached to the joint, and insert the sub-cassette into the ribbon cassette as shown in Figure 14-2.
7. Pull out the ink ribbon and set it according to the directions shown by the arrow in Figure 14-3. It's easy for the ribbon to get twisted somewhere along its pathway. Don't let it happen!


Figure 14-3. Make sure that the ribbon is not twisted when you thread it through its path.
8. Firmly pull the idler gear towards you and guide the ribbon between the idler gear and the ribbon drive gear.
9. Remove both top and bottom of the ribbon sub-cassette.
10. Replace the ribbon cartridge top cover.
11. When you've completed the installation, mark the correct number on the silver label stuck on the right-hand side of the cartridge cover. This number indicates the number of times the ribbon has been replaced. Five replacements is the maximum, after which you should buy a complete new cartridge.

## Replacing a Fuse

How can you tell when you've blown a fuse? Well, when the printer won't operate and the power lamp on the control panel isn't lit, even though you're sure that the power switch is on and the printer is plugged in - it's likely a blown fuse.

To check the primary fuse, you start by turning the power switch off and unplugging the power cord.
Warning: There is an extreme shock hazard inside Radix. To avoid serious injury, it is important that the power cord is disconnected.

Next, remove the upper case, shown in Figure 14-4, by pulling off the platen knob. Caution: Don't twist or turn the platen knob; pull it straight off.

Then remove the fastening screws along the back side. Lift the back edge of the cover and at the same time, pull it slightly forward to release the front of the case. Lift it all the way off, being careful not to pull the wires which connect the cover to the case.

When the case is off, check Figure 13-5 for location of the primary fuse, which you'll find held by its clamps close to the power switch. The fuse is a commonly used type, with a metal strip suspended in a glass and metal case. If the strip is broken, the fuse is blown. Replace this fuse with a 3A/125V slow-blow type fuse (Bell 5MT3 or equivalent). Now reassemble Radix and test-run it. If the printer still isn't working, call on your Radix dealer/service center for help.

## Replacing the Print Head

The dot matrix print head has a remarkably long life, printing perhaps $100,000,000$ characters before it wears out. You'll know when that happens when the printout is too faint for your taste even after replacing the ink ribbon or cartridge.
Warning: The print head gets hot during operation, so let it cool off for awhile, if necessary, to avoid burning your fingers.

To replace the print head, start by turning the power switch off and unplugging the power cord.
Then, in sequence:

1. Remove the front cover and the ribbon cartridge.


Figure 14-4. After removing the screws, pull the upper case slightly forward and lift it off the printer. The primary fuse is located near the power switch.
2. Remove the two screws and washers fastening the print head.
3. While holding the print head, pull off the head cable connector from the print head.
4. Insert the head cable connector to a new print head and fasten with the same two screws and washers.


Figure 14-5. Replacement of Radix's print head is simple.
5. Apply "screw lock," (an adhesive available at hardware stores) to the heads of the screws.
Be absolutely sure that you've made a good solid connection between the print head and its cable connector, or it could cause problems.


## Appendix

## Appendix A

## Setting Up Radix

In this appendix, we'll show you how to unpack your new Radix printer, set it up in the right location, and get it ready for you to load it with paper and start printing. But first . . .

## Where Shall We Put It?

Before you do anything else, give some thought to where you'll be using your printer. Obviously, it will be somewhere near your computer. And both printer and computer will lead longer, healthier lives if they like their environment. For a congenial environment, we recommend. .

- Placing the printer on a flat surface
- Keeping it out of direct sunlight and away from heat-producing appliances
- Using it only in temperatures where you are comfortable
- Avoiding areas with a lot of dust, grease, or humidity
- Giving it "clean" electricity. Don't connect it to the same circuit as large, noise-producing motors
- Power supply voltage should be the same voltage that's specified on the identification plate - not over $10 \%$ more or less than the recommended 120 volts AC.
Warning: Extremely high or low voltage can damage your printer.


## What Have We Here?

Now let's take a look at what's in the carton. Take it slow and easy, and check each item in the box against Figure A-1. There should be exactly 9 items. One important item is the printer's warranty and registration card. Now is the time to fill it in and mail it. It's a good warranty, and you'll like the protection it gives you.


Figure A-1. Inside the carton you should have received: 1) Radix printer, 2) cut sheet guide, 3) continuous paper guide, 4) power cord, 5) platen knob, 6) spare fuse, 7) ribbon cartridge, 8) this user's manual, and 9) warranty registration card.

Let's move on to the next step . . .

## Removing the printer covers

What are covers for, really? Primarily, for two reasons: one, to keep dust and dirt away from the delicate "innards," and two, to keep the noise level down. The front cover must be on or Radix will not print. So, you should keep the covers on all the time, except when setting the ink ribbon cartridge in place, loading paper, or making other adjustments when the cover might be in the way.

Radix has two covers, front and back. Both operate in the
same way. To remove them, lift up the free end (nearest the center of the printer) so that the cover makes approximately a $45^{\circ}$ angle with the printer frame, then with a slight rocking motion, lift it straight up and off the machine. To replace, just reverse the procedure. Figure A-2 illustrates the proper position and movement for both removal and replacement of the covers.


Figure A-2. Remove the printer covers by tilting them up to about $45^{\circ}$, then lifting straight up.

## Removing packing and shipping screws

There are three (on a Radix-10) or four (on a Radix-15) shipping screws on the bottom of the printer, used to hold the internal chassis securely to the external frame during shipping. To get at these, carefully place the printer upside down on a soft surface like a foam cushion. Remove the screws with a Phillips screwdriver as shown in Figure A-3.

Next, remove the front cover, and remove the large flat piece of cardboard packing which protects the print head, per Figure A-4.


Figure A-3. Radix-10 has three screws which secure the chassis during shipping; Radix-15 has four. They should be removed before use.


Figure A-4. Remove the piece of cardboard packing that protects Radix's print head.

You'll be smart to save these screws, along with the rest of the packing material and the shipping carton, in case you ever have to ship the printer. Tape the screws somewhere on the carton or packing. (You did fill in that warranty card, didn't you?)

## Installing the platen knob

This is the knob that turns the rubber platen cylinder. It fits into the hole on the right side of the printer case. Just match the odd-shaped hole in the knob with the same shape on the shaft you'll see inside the hole in the case, and press it on firmly. Give the knob a few turns to see that it's turning the platen easily and smoothly.

## Installing the ribbon cartridge

The ribbon cartridge greatly simplifies installing the ink ribbon. For easy installation, though, it's wise to follow the sequence and diagrams shown here.

1. Turn the power switch off, and remove the front cover (as explained earlier.)
2. Slide the print head gently with your fingers to the approximate center of its pathway.


Figure A-5. A guide pin on each side of the ribbon cartridge helps to align the cartridge during installation.
3. Note the position of the guide pins on the cartridge as shown in Figure A-5. Then hold the cartridge at each end, with the ribbon facing away from you, and insert the guide pins into the cut-out hooks of the printer frame. You'll find this easier if you tilt the cartridge forward as you do this, as Figure A-6 shows.
4. Using the guide pins as a fulcrum, lightly press the cartridge down until the two holder springs snap shut to hold the cartridge firmly in place.
5. Now thread the ribbon carefully between the print head and the ribbon guide next to the platen. (Take a good look at


Figure A-6. Tilt the ribbon cartridge in until the guide pins meet the hooks in the printer frame, then lower the front edge until the holder springs hold it in place.

Figure A-7.) You might want to use a ball point pen to lightly press the ribbon guide against the platen (rubber roller) while you insert the ribbon into the thin space between the print head and ribbon guide. Important: Center the ribbon vertically in the middle of the print head to avoid misprints or the ribbon coming off during printing.
6. Turn the spool gear knob in the direction of the arrow printed on the top left side of the cartridge to take up the slack in the ribbon; continue turning the spool gear four or five times to verify that everything is properly set and ready to roll.
7. As a final step, replace the front cover. As you'll learn in Chapter 1, Radix refuses to print unless the front cover is securely in place! A glowing "pause" lamp warns of a loose cover. When this occurs, do the obvious thing: fasten the cover securely, press the pause button to douse the green light, and you're back in business!


Figure A-7. Use a ball point pen to place the ribbon between the print head and the ribbon guide. It's important that the ribbon is centered vertically between the print head and the ribbon guide.

## Connecting Radix to Your Computer

To complete the installation, you'll need to connect Radix to your computer. In appendices B through E, we've described this procedure, including specific guidelines for making connections ("interfacing') with several of the most popular computers used by Radix owners.

Then, in Chapter 1, you'll learn how to load paper (here's where you'll use the paper guides) and operate Radix.

## Appendix $B$

## IBM Personal Computer and Compaq Computer

Both the IBM Personal Computer and the Compaq computer function the same when connected to Radix. We will discuss the IBM-PC, knowing that all we say works just as well for the Compaq.

## Connecting Radix to an IBM

Radix can connect to either a serial or a parallel interface in the IBM-PC or IBM-XT computers. IBM calls a parallel interface a "Parallel Printer Adapter," and they call a serial interface an "Asynchronous Communications Adapter."

You only need a cable to connect Radix to your IBM-PC. Your Radix dealer can furnish this cable, or you can use a standard IBM-PC parallel printer cable for the parallel interface.

## Connecting with the parallel interface

We recommend that you set the DIP switches in Radix as shown below when connecting it to an IBM-PC parallel interface.

## Connecting to the serial interface

The IBM-PC expects its printer to be connected to the parallel interface. If you are using the serial interface, then you will need to instruct your computer to send information to the serial interface instead of to the parallel interface. This is done with the MODE command. You must use the following two commands each time you turn on your computer.

MODE COM1:48,N,8,1,P
MODE LPT1:=COM1:

The first line sets up the asynchronous adapter to match the

Table B-1
Recommended DIP switch settings for IBM-PC

| Switch | Setting | Function |
| :---: | :---: | :--- |
| A-1 | ON | 11 inch page size |
| A-2 | ON | Normal print density |
| A-3 | ON | 10 CPI pitch |
| A-4 | ON | Normal characters |
| A-5 | ON | 1/6 inch line feed |
| A-6 | ON | U.S.A. Character set |
| A-7 | ON |  |
| A-8 | ON |  |
| C-1 | ON | Paper-out detector active |
| C-2 | OFF | Parallel interface |
| C-3 | OFF | 8-bit interface |
| C-4 | OFF | No auto line feed |

## Table B-2 <br> IBM-PC parallel cable

| Radix |  | IBM-PC Parallel |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 1 | STROBE | 1 | STROBE |
| 2 | D1 | 2 | D0 |
| 3 | D2 | 3 | D1 |
| 4 | D3 | 4 | D2 |
| 5 | D4 | 5 | D3 |
| 6 | D5 | 6 | D4 |
| 7 | D6 | 7 | D5 |
| 8 | D7 | 8 | D6 |
| 9 | D8 | 9 | D7 |
| 10 | ACK | 10 | ACK |
| 11 | BUSY | 11 | BUSY |
| 12 | PAPER END | 12 | PAPER END |
| 13 | SELECTED | 13 | SELECT |
| 16 | GROUND | 18-25 | GROUND |
| 31 | RESET | 16 | RESET |
| 32 | ERROR | 15 | ERROR |

settings of DIP switch B in Radix. The second re-directs printer output to the serial port. The switches on DIP switch B must be set as shown below to use this MODE command. (The IBM-DOS manual tells you how to create a different MODE command for different DIP switch settings.) You can put these two MODE commands into a file named AUTOEXEC.BAT and it will execute automatically each time you start your computer.

Table B-3
Serial switch settings

| Switch | Setting | Function |
| :---: | :---: | :--- |
| B-1 | OFF | 1 stop bit |
| B-2 | OFF | 8 data bits |
| B-3 | OFF | No parity |
| B-4 | ON | Serial busy, 1 block mode |
| B-5 | OFF |  |
| B-6 | either | Parity |
| B-7 | ON | 4800 baud |
| B-8 | OFF |  |
| B-9 | ON |  |
| B-10 | either | Not used |

The serial cable shown below will work with DIP switch B set as shown above to connect Radix to a serial interface on the IBM.

Table B-4
IBM-PC serial cable

| Radix |  |  |  | IBM-PC |  |
| :---: | :---: | :--- | :---: | :---: | :---: |
| Pin No. | Function |  | Pin No. | Function |  |
| 2 | TRANSMIT DATA | - | 3 | RECEIVE DATA |  |
| 3 | RECEIVE DATA | - | 2 | TRANSMIT DATA |  |
| 4 | REQUEST TO SEND | - | 5 | CLEAR TO SEND |  |
| 5 | CLEAR TO SEND | - | 4 | REQUEST TO SEND |  |
| 7 | SIGNAL GROUND | - | 7 | SIGNAL GROUND |  |
| 8 | CARRIER DETECT | - | 4 | REQUEST TO SEND |  |
| 20 | DATA TERMINAL READY |  | 6 | DATA SET READY |  |

## BASIC programming

All the programs in this book are written in the BASIC used by the IBM-PC. That makes it easy to do the things that we show you. But when you start writing your own programs there are several things that you should know.

IBM BASIC defaults to a printer width of 80 . This means that it will automatically insert a carriage return and line feed after every 80 characters. If you want to print lines longer than 80 characters you will need to change the width of the printer. If you set the printer width to 255 , then the IBM will never insert a line feed and carriage return, unless you start a new line. (This is what you want usually.) To set the width of the printer to 255 , use this statement:

```
10\emptyset WIDTH "LPT1:", 255
```

IBM BASIC has one other little trick that will mess up your graphics if you let it. IBM BASIC is very insistent about adding a line feed to a carriage return. This is fine if you are printing text, but if an ASCII 13 pops up in the middle of your graphics printout, IBM BASIC will still add a line feed to it. This will put strange things in the middle of your graphics, and leave you with extra characters at the end of your line.

There is an easy way to avoid this problem. You just open the printer as a random file. The following program shows how this is done.

| $1 \emptyset$ OPEN "LPT1:" AS \#1 | : RANDOM ACCESS |
| :--- | :--- |
| $2 \emptyset$ WIDTH \#1, 255 | SET WIDTH TO 255 |
| $3 \emptyset$ PRINT \#1, "TESTING" | : PRINT A LINE |
| $4 \emptyset$ PRINT \#1, CHR $\$(1 \emptyset)$ | ADD YOUR OWN LF |

## Listing programs

To list programs on Radix, make sure the program is in the IBM's memory and use the LLIST command. This directs the listing to the printer instead of the screen.

## Printing Graphics Screens

Version 2.0 of the IBM DOS has a program called GRAPHICS that allows you to print a graphics display screen．The program as IBM created it is，however，not compatible with Star printers．But all that is required to make it work is to change two bytes of the program．This can easily be done with the DEBUG program that comes with IBM DOS．（Even if you have never used DEBUG before we will lead you through it．）

The first step is to create a diskette with DOS， GRAPHICS．COM and DEBUG．COM on it（it doesn＇t matter if there are other things on it too）．We will leave it to you to create this diskette．Look in your computer＇s manual if you have trouble． Be sure that this is not your original DOS diskette．

With this diskette in drive A，follow the script below．The things that you are to type are shown in italic type．The messages that will appear on your screen are shown in regular type．With two exceptions，every number should appear on your screen exactly as it does in this script．The two exceptions are the four digit numbers before the colons（0921：in the script）．They may be different on your computer．The symbol 〈enter〉 means to press the enter key．

```
A)DEBUG GRAPHICS.COM 〈enter`
-E 169 (enter)
0921:0169 18.10 (enter)
-E 250 <enter)
0921:0250 24.18 <enter>
-W <enter>
Writing \varnothing315 bytes
-Q <enter)
```

A）

To use this program，type GRAPHICS at the A＞prompt before you create a graphics image on the screen．Then when you want to print a graphics image，press shift－PrtSc and the image will be copied from the screen to the printer．For more information on the GRAPHICS program refer to your DOS manual．

## Program Listings

There are no program listings given here for the IBM-PC because all the programs in the book are written for the IBM-PC.

## Appendix C

## Apple II Computers

Apple II computers require an interface board (mounted inside the Apple II) and a cable to run Radix. Star recommends that you use the grafstar ${ }^{\text {rim }}$ interface for the Apple II, II + , and IIe. It comes complete with a cable and is easily installed. A unique feature of the grafstar" makes it possible to do some fancy dot graphics programming.

You can, of course, use many of the available parallel interface boards for the Apple II, and an appropriate cable.

## Setting the Switches

We recommend that you set the DIP switches in Radix as shown below when connecting it to an Apple II. Since you'll be using the parallel interface, the settings of switch $B$ have no effect.

Table C-1
Recommended DIP switch settings for Apple

| Switch | Setting | Function |
| :---: | :---: | :--- |
| A-1 | ON | 11 inch page size |
| A-2 | ON | Normal print density |
| A-3 | ON | 10 CPI pitch |
| A-4 | ON | Normal characters |
| A-5 | ON | 1/6 inch line feed |
| A-6 | ON | U.S.A. Character set |
| A-7 | ON |  |
| A-8 | ON |  |
| C-1 | ON | Paper-out detector active |
| C-2 | OFF | Parallel interface |
| C-3 | ON | 7-bit interface |
| C-4 | OFF | No auto line feed |

## Table C-2 <br> Apple parallel cable

| Radix |  | Apple Board |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 25 | SIG GND | 1 | SIG GND |
| 26 | SIG GND | 2 | SIG GND |
| 27 | SIG GND | 3 | SIG GND |
| 1 | STROBE | 4 | STROBE |
| 28 | SIG GND | 5 | N/C |
| 2 | DATA1 | 6 | DATA1 |
| 3 | DATA2 | 7 | DATA2 |
| 4 | DATA3 | 8 | DATA3 |
| 5 | DATA4 | 9 | DATA4 |
| 6 | DATA5 | 10 | DATA5 |
| 7 | DATA6 | 11 | DATA6 |
| 8 | DATA7 | 12 | DATA7 |
| 9 | DATA8 | 13 | DATA8 |
| 10 | ACK | 14 | ACK |
| 29 | SIG GND | 15 | SIG GND |

## Applesoft BASIC

The Apple II computer, using Applesoft BASIC, does not have different types of PRINT statements for the screen and printer. You must add commands to your programs that direct the output of the PRINT statements to the printer. To direct output to the printer (with the interface board in slot \#1) you must use the PR\# 1 command. Depending on the version of Applesoft BASIC that you are using this command can take various forms. It is usually one of the following:

```
1\varnothing PR# 1
or
10 PRINT "〈Ctrl-D>PR#1"
or
10 PRINT CHR$(4) "PR#1"
```

To return output to the screen, the command is PR\# 0 , in the same form that works for PR\# 1.

To allow line lengths longer than the Apple II usually uses you must add the following statement to your programs:
$2 \emptyset$ PRINT CHR $\$(9)$ "255N"

This allows lines of any length to be sent to the printer and is especially important for dot graphics. (The number 255 in the BASIC statement above could be replaced by any number from 0 to 255 and would set the line length to that value.)

Two codes are a particular problem on the Apple II: CHR\$(7) and CHR\$(9). The computer will not send these codes to Radix. Try to avoid using these in dot graphics programs.

The Apple II computer uses CHR\$(9) as a printer initialization code. It won't send it on to the printer. There is a way to bypass this problem, however. You can change the printer initialization code to a value other than CHR\$(9) like this:

## PR\#1

PRINT CHR\$(9) ; CHR\$(1)

This makes CHR\$(1) the printer initialization code (and transfers the problems to that code) and allows you to use Radix's tabs.

There is one more way to sneak problem codes past the Apple II's operating system and that's to poke the codes directly to the output port. To send ASCII code 9 , for example, you could do this:

```
100 N = 9
11\emptyset IF PEEK(496\emptyset1)>127 THEN 11\varnothing
12\emptyset POKE 49296,N
```

Line 110 checks the printer's status, and when it's okay, line 120 pokes the code to the printer.

## Listing programs

To make a listing of your BASIC programs on Radix from your Apple II computer you must take the following steps:

1. Be sure that the program that you wish to list is in the memory of the Apple II.
2. Direct the output to the printer by typing PR\#1.
3. Type LIST to start the listing.
4. When the listing is finished, type PR\#0 to redirect the output to the screen.

## Program Listings

Following are program listings in Applesoft BASIC for the main utility programs used in the tutorial section of this book.

## Download character editing utility



380 RETURN
$39 \varnothing$ GOSUB 1ø9ø：Y＝Y－2：H＝H－1：IF Y＜ 1 THEN PRINT CHR\＄（7）；：Y＝1：H＝ 1
$4 \varnothing \varnothing$ GOSUB 1ø50：RETURN
410 GOSUB 190Ø：Y＝Y＋2：H＝H＋1：IF Y＞ 21 THEN PRINT CHR\＄（7）；：Y＝21：H＝ 11
$42 \varnothing$ GOSUB 1050：RETURN
430 GOSUB 1900：X $=X+2: G=G+1:$ IF X $>13$ THEN
PRINT CHR\＄（7）；：X＝13：G＝7
440 GOSUB 1050：RETURN
450 GOSUB 1 $\varnothing \varnothing \varnothing: \mathrm{X}=\mathrm{X}-2: \mathrm{G}=\mathrm{G}-1$ ：IF X＜ 1 THEN PRINT CHR\＄（7）；：X＝1：G＝ 1
460 GOSUB 1050：RETURN
$47 \varnothing$ IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN PRINT CHR $\$$（7）；：RETURN
$48 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=1:$ INVERSE ：VTAB X $+2:$ HTAB $Y+5:$ PRINT SC\＄；：NORMAL ：GOSUB 4øø日：RETURN
$49 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\varnothing:$ NORMAL $:$ VTAB X $+2:$ HTAB $Y+5:$ PRINT CS\＄；：GOSUB 4øøØ：RETURN
$900 \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$
901 HOME
902 FOR I＝ 2 TO 16 STEP 2：VTAB I：HTAB 5：FOR J＝ 1 TO 23：PRINT＂－＂；：NEXT J：PRINT ：NEXT I
904 FOR J＝ 3 TO 16 STEP 2：VTAB J：FOR I $=5$ TO 27
STEP 2：HTAB I：PRINT＂！＂；：NEXT I：PRINT ：NEXT J
$905 \mathrm{~K}=1$ ：VTAB 1：HTAB 5
906 FOR K＝ 1 TO 11：PRINT K；＂＂；：NEXT K
$907 \mathrm{~K}=\varnothing$
908 FOR V＝ 3 TO 15 STEP 2：VTAB V：HTAB 2：PRINT $2^{\wedge}$ $\mathrm{K}: \mathrm{K}=\mathrm{K}+1$ ：NEXT V
909 VTAB 17：FOR I＝ 1 TO 11： $\operatorname{HTAB} 4+I * 2:$ PRINT ＂Ø＂；：NEXT I
910 VTAB 1：HTAB 30：PRINT＂CURSOR＂
912 VTAB 2：HTAB 29：PRINT＂MOVEMENT＂
914 VTAB 3：HTAB 29：PRINT＂〈I〉 UP＂
916 VTAB 4：HTAB 29：PRINT＂〈M〉 DOWN＂
918 VTAB 5：HTAB 29：PRINT＂〈J〉 LEFT＂
920 VTAB 6：HTAB 29：PRINT＂〈K〉 RIGHT＂
922 VTAB 7：HTAB 29：PRINT＂〈RET〉 INSERT＂
924 VTAB 8：HTAB 29：PRINT＂〈SPACE〉 DEL＂
926 VTAB 9：HTAB 29：PRINT＂〈A〉ASCII＂
928 VTAB 10：HTAB 29：PRINT＂〈P〉 PRINT＂
930 VTAB 11：HTAB 29：PRINT＂〈C〉 CLEAR＂
932 VTAB 12：HTAB 29：PRINT＂〈R〉 COPY ROM＂

```
934 VTAB 13: HTAB 29: PRINT "<+> WIDER"
936 VTAB 14: HTAB 29: PRINT "〈-> NARROWER"
938 VTAB 15: HTAB 29: PRINT "〈D> DESCENDER"
940 VTAB 16: HTAB 29: PRINT "〈ESC> EXIT"
95\emptyset FOR I = 1 TO 11: FOR J = 1 TO 7:Z(J,I) = \emptyset: NEXT J:
 NEXT I
9 6 0 ~ R E T U R N
1\emptyset\emptyset\emptyset IF Z(G,H)=\varnothing THEN VTAB X + 2: HTAB Y + 5: PRINT
 " ";
101\emptyset IF Z(G,H) = 1 THEN VTAB X + 2: HTAB Y + 5: PRINT
 SC$;
1015 VTAB 23: HTAB 1
102\emptyset RETURN
105\varnothing IF Z(G,H) = 1 THEN INVERSE : VTAB X + 2: HTAB Y +
 5: PRINT CS$;: NORMAL
106\emptyset IF Z(G,H) = \emptyset THEN NORMAL : VTAB X + 2: HTAB Y +
 5: PRINT CS$;: NORMAL
1065 VTAB 23: HTAB 1
197\emptyset RETURN
1910 REM CLEAR CURRENT CHARACTER
192\emptyset PW% = 11:DS = \emptyset
193\emptyset FOR H = 1 TO 11:MM(H) = \emptyset: NEXT H
1935 GOSUB 90\varnothing
1940 GOSUB 2200: RETURN
2\emptyset8\emptyset REM BUILD COMMAND STRING
2085 RC$ = ESC$ + "*" + CHR$ (1)
2990 RC$ = RC$ + CHR$(AS) + CHR$(DS * 16 + PW%)
2095 FOR I = 1 TO 11:RC$ = RC$ + CHR$ (MM(I)): NEXT I
2 9 9 6 ~ R E T U R N
2200 REM
2210 VTAB 2\emptyset: HTAB 1: PRINT "ASCII CODE = ";AS;
222\emptyset PRINT "("; CHR$ (AS);")";
2230 VTAB 20: HTAB 25: PRINT "DESCENDER= ";DS;
2250 FOR I = 8 TO 19: VTAB 22: HTAB I: PRINT " ";: NEXT
 I
2260 VTAB 22: HTAB 1: PRINT "WIDTH: ";: FOR I = 1 TO
 PW%: PRINT "*";: NEXT I
227\emptyset VTAB 23: HTAB 1
228\emptyset RETURN
30\emptyset\emptyset REM WIDER
3010 IF PW% = 11 THEN PRINT BEEP$;: RETURN
302\emptyset PW% = PW% + 1
3030 GOSUB 22\emptyset\emptyset
```

```
3040 RETURN
3100 REM NARROWER
311\emptyset IF PW% = 4 THEN PRINT BEEP$;: RETURN
312\emptyset PW% = PW% - 1
313\emptyset GOSUB 22\emptyset\emptyset
314\varnothing RETURN
32\emptyset\emptyset REM DESCENDER
3210 DS = ABS (1 - DS)
322\emptyset GOSUB 22\emptyset\emptyset: RETURN
3300 REM PRINT
3310 GOSUB 208\emptyset
3 3 2 0 ~ P R \# ~ 1 /
3325 PRINT CHR$ (9);"255N"
3327 PRINT CHR$ (27);"@"
3330 PRINT "ASCII CODE = ";AS: PRINT
3335 PRINT RC$
3345 PRINT CHR$ (15);"CONDENSED"
335\emptyset PRINT NR$: FOR I = 1 TO 21: PRINT CHR$ (AS);:
 NEXT I: PRINT
3355 PRINT NF$
336\emptyset PRINT CHR$ (27); "B"; CHR$ (2); "ELITE"
3365 PRINT NR$: FOR I = 1 TO 15: PRINT CHR$ (AS);:
 NEXT I: PRINT
337\emptyset PRINT NF$
3375 PRINT CHR$ (27);"B"; CHR$ (1);"PICA"
3378 PRINT NR$: FOR I = 1 TO 12: PRINT CHR$ (AS);:
 NEXT I: PRINT
3379 PRINT NF$
338\emptyset PRINT CHR$ (27);"W"; CHR$ (1);"EXPANDED"
3384 PRINT NR$;: FOR I = 1 TO 6: PRINT CHR$ (AS);:
 NEXT I
3385 PRINT CHR$ (27);"W" ; CHR$ (\emptyset)
3386 PRINT NF$
3387 PRINT : PRINT "CHARACTER SET ": PRINT NR$: FOR I =
 33 TO 126
3388 PRINT CHR$ (I);: NEXT I: PRINT : PRINT NF$: PRINT
3390 PRINT : PRINT "PROPORTIONAL"
3392 PRINT PN$;: FOR I = 1 TO 15: PRINT CHR$ (AS);:
 NEXT I: PRINT PF$
3393 PRINT : PRINT : PRINT "CHARACTER SET
 ..PROPORTIONAL": PRINT PN$: FOR I = 33 TO 126: PRINT
 CHR$ (I);: NEXT I: PRINT : PRINT PF$: PRINT
3394 PRINT "USE THIS DATA STATEMENT TO DOWNLOAD THIS
 CHARACTER."
```

```
3395 PRINT "DATA 27";
3396 FOR I = 2 TO LEN (RC$)
3397 PRINT ","; STR$ (ASC (MID$ (RC$,I,1)));
3398 NEXT I: PRINT : PRINT : PRINT :
3399 PR# Ø: RETURN
3500 REM ASCII CODE
3510 VTAB 23: HTAB 1
352\emptyset INPUT "ENTER ASCII (33-126) ";AS
3530 IF AS < 33 OR AS > 126 THEN PRINT BEEP$;: GOTO
 3510
3535 VTAB 23: FOR I = 1 TO 39: HTAB I: PRINT " ";: NEXT
 I
3540 GOSUB 2200: RETURN
37\varnothing\varnothing REM COPY ROM
3710 PR# 1
3715 PRINT CHR$ (9);"255N"
372\emptyset PRINT ESC$;"*"; CHR$ (\emptyset);
3 7 3 0 ~ P R \# ~ Ø ~
374\varnothing RETURN
4 0 0 0 ~ R E M ~ C A L C U L A T E ~ A ~ C O L U M N ~ V A L U E ~
4\emptyset1\emptyset MM(H) = \emptyset: FOR J = 1 TO 7
4ø2\emptysetMM(H) = MM(H) + Z(J,H) * 2 ^ (J - 1)
4 0 3 0 ~ N E X T ~ J : ~ G O S U B ~ 4 1 \emptyset \emptyset : ~ R E T U R N ~
410\emptyset REM PRINT A COLUMN VALUE
4103 FOR I = 1 TO 3: VTAB 16 + I: HTAB 4 + H * 2: PRINT
 " ";: NEXT I
4105 LV$ = STR$ (MM(H))
4 1 0 6 ~ F O R ~ I ~ = ~ 1 ~ T O ~ L E N ~ (L V \$) ~
4107 VTAB 16 + I: HTAB 4 + H * 2: PRINT MID$
 (LV$,I,1);: NEXT I
412\emptyset VTAB 23: HTAB 1: RETURN
```


## Piechart program

```
HOME
5 PRINT "Please Stand By"
10 A = 768
2\emptyset FOR I = A TO A + 12
30 READ B
35 POKE I,B
4 0 ~ N E X T ~ I ~
50 DATA 32,74,255,165,250,5,251
60 DATA 133,252,32,63,255,96
10\emptyset REM PIECHART
```

$11 \varnothing$ DIM BIT\%(190,36), A\$(36),PCT\%(25),TXT\$(48), PTXT\$(25)
$12 \emptyset \mathrm{ES} \mathrm{\$}=\mathrm{CHR} \$(27): \mathrm{LF} \$=\mathrm{CHR} \$(10)$
$130 \mathrm{FF} \$=\mathrm{CHR} \$(12): \mathrm{VT} \$=\mathrm{CHR} \$(11)$
$14 \varnothing$ EM\$ = ES\$ + "E":CE\$ = ES\$ + "F"
$145 \mathrm{RF} \$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(12)$
$15 \emptyset$ FOR $I=1$ TO 148:SP\$ $=\operatorname{SP} \$+\operatorname{CHR} \$(\varnothing): \operatorname{NEXT} I$
160 FOR I = 1 TO 79:SS\$ = SS\$ + " ": NEXT I
$1 \not 0 \emptyset$ REM SET PROGRAM CONSTANTS
$101 \emptyset \operatorname{MASK} \%(1)=64: \operatorname{MASK} \%(4)=8$
$1 \emptyset 2 \emptyset \operatorname{MASK} \%(2)=32: \operatorname{MASK} \%(5)=4$
$1 \varnothing 3 \varnothing \operatorname{MASK} \%(3)=16: \operatorname{MASK} \%(6)=2$
$1040 \mathrm{LX}=2 \emptyset: \mathrm{LY}=2 \emptyset$
$1950 \mathrm{XFAC}=190 / \mathrm{LX}: Y F A C=216 / \mathrm{LY}$
$106 \emptyset$ FOR $I=\emptyset$ TO 48
$1070 \operatorname{TXT\$ (I)}=$ SS $\$$
$108 \emptyset$ NEXT I
1090 GOSUB 7090
1092 HOME : PRINT : PRINT : PRINT : PRINT
1093 PRINT "THIS PROGRAM TAKES ABOUT"
1094 PRINT "2 MINUTES TO RUN. PLEASE"
1095 PRINT "TURN ON YOUR PRINTER AND"
1096 PRINT "STAND BY..................."
1097 PRINT : PRINT : PRINT
1098 FOR I = 1 TO 31: PRINT "Ø";: NEXT I
1099 PRINT " ": PRINT " "
$11 \emptyset \emptyset$ FOR I = 1 TO NP\%: PRINT "Ø";: NEXT I
$111 \varnothing$ PRINT " "
$112 \emptyset$ VTAB 12: HTAB 1
$200 \emptyset$ REM PLOT CURVE
$2010 \mathrm{RAD}=9$
$2 \varnothing 2 \varnothing \mathrm{X} 1=19: \mathrm{Y} 1=1 \varnothing$
$2 \emptyset 3 \varnothing$ FOR ANG $=\varnothing$ TO $36 \emptyset$ STEP 12
$204 \emptyset \mathrm{R} 1=$ ANG * $6.28 / 36 \emptyset$
$205 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \varnothing$
$2 \not 6 \emptyset$ GOSUB $4 \emptyset \varnothing \emptyset$
$2 \not 70$ NEXT ANG
2075 VTAB 14: HTAB 1
$2 \emptyset 8 \emptyset$ FOR PI $=1$ TO NP\%
$2090 \mathrm{X} 1=1 \varnothing: \mathrm{Y} 1=1 \varnothing$
$2100 \mathrm{TP} \mathrm{\%}=\mathrm{TP} \%+\mathrm{PCT} \%(\mathrm{PI})$
$211 \emptyset \mathrm{ANG}=36 \emptyset * \mathrm{TP} \% * . \varnothing 1$
$212 \emptyset \mathrm{R} 1=$ ANG * $6.28 / 36 \varnothing$
$213 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \emptyset$

```
214\emptyset GOSUB 4\emptyset\emptyset\emptyset
2150 GOSUB 6\emptyset\emptyset\emptyset
216\emptyset NEXT PI
30\emptyset\emptyset REM SEND BIT IMAGE MAP TO PRINTER
3090 PR# 1
310\emptyset PRINT CHR$ (9); "\emptysetN"
311\emptyset X = (4\emptyset - LEN (TI$) / 2)
312\emptyset FOR I = 1 TO X: PRINT " ";: NEXT I
313\emptyset PRINT EM$;TI$;CE$;LF$
314\emptyset PRINT VT$;VT$;VT$
3150 PRINT ES$;"A"; CHR$ (6)
3160 FOR I = \emptyset TO 48: PRINT TXT$(I): NEXT I
3165 PRINT RF$;VT$;VT$;VT$;
3166 PRINT LF$;LF$;LF$;LF$;LF$;LF$
317\emptyset FOR ROW = \emptyset TO 35
318\emptyset PRINT ES$;"K"; CHR$ (82); CHR$ (1);SP$;
319\emptyset FOR COL = 1 TO 19\emptyset: PRINT CHR$ (BIT%(COL,ROW));:
NEXT
3192 PRINT " "
321\varnothing NEXT ROW
325\emptyset PRINT ES$;"2";FF$
3255 PR# \emptyset
3257 HOME
3260 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1 TO X2,Y2
4010 XL = X2 - X1:YL = Y2 - Y1
4\emptyset2\emptyset NX = ABS (XL * XFAC):NY = ABS (YL * YFAC)
403\emptyset IF NX < NY THEN NX = NY
404\emptyset NS% = INT (NX + 1)
4050 DX = XL / NS%:DY = YL / NS%
406\emptyset FOR I = 1 TO NS%
4\emptyset7\emptyset X1 = X1 + DX:Y1 = Y1 + DY
4080 GOSUB 500\emptyset
4 0 9 0 ~ N E X T ~ I ~
4 0 9 5 ~ P R I N T ~ " * " ;
4 1 0 0 ~ R E T U R N
50\emptyset\emptyset REM PLOT A POINT AT X1,Y1
5010 XX = X1 * XFAC:YY = Y1 * YFAC
502\emptyset COL = INT (XX) + 1
5030 ROW = INT (YY / 6)
5040 XIT% = INT (YY - (6* ROW)) + 1
5042 POKE 250,BIT%(COL,ROW)
5044 POKE 251,MASK%(XIT%)
5046 CALL 768
```

```
5050 BIT%(COL,ROW) = PEEK (252)
5060 RETURN
6000 REM
6010 MA% = (ANG + PA%) / 2
602\emptyset R1 = MA% * 6.28 / 36\emptyset
6030 X3 = INT (2\emptyset * SIN (R1)):Y3 = INT (22 * COS
 (R1))
6040X4=22 + X3:Y4 = 40 + Y3
6045 IF (MA% > 7\varnothing AND MA% < 11\emptyset) THEN GOSUB 630\emptyset: GOTO
 6070
6047 IF (MA% > 250 AND MA% < 290) THEN GOSUB 6300:
 GOTO 6070
605\emptyset IF MA% > 27\emptyset OR MA% < 90 THEN GOSUB 610\emptyset: GOTO
 6070
6 0 6 0 \text { GOSUB 6200}
6070 PA% = ANG
6 0 8 \emptyset ~ R E T U R N
610\emptyset MM$ = TXT$(X4)
6102 LL$ = LEFT$(MM$,Y4)
6104 PP = LEN (PTXT$(PI))
6106 RR$ = RIGHT$ (MM$,8\emptyset - (Y4 + PP))
61ø8 TXT$(X4) = LL$ + PTXT$(PI) + RR$
6110 RETURN
62ø\emptyset MM$ = TXT$(X4)
62\emptyset2 PP = LEN (PTXT$(PI))
62ø4 LL$ = LEFT$ (MM$,(Y4 - PP))
62ø6 RR$ = RIGHT$ (MM$,(80 - Y4))
6208 TXT$(X4) = LL$ + PTXT$(PI) + RR$
621\emptyset RETURN
6300 MM$ = TXT$(X4)
6310 PP = INT (LEN (PTXT$(PI)) / 2)
632\emptyset LL$ = LEFT$ (MM$,(Y4 - PP))
6330 RR$ = RIGHT$ (MM$,(80 - Y4))
634\varnothing TXT$(X4) = LL$ + PTXT$(PI) + RR$
6 3 5 \emptyset ~ R E T U R N
70\emptyset\emptyset REM
7010 HOME : PRINT : PRINT : PRINT
702\emptyset INPUT "ENTER TITLE FOR CHART ";TI$
7\emptyset25 IF LEN (TI$) < = 40 THEN 7\varnothing3\varnothing
7027 PRINT CHR$ (7);"TITLE TOO LONG - 4\emptyset CHAR. MAX ":
 GOTO 7000
7\varnothing3\emptyset AS% = \emptyset:AL% = 10\emptyset
7035 FOR I = 1 TO 24
7 0 4 0 ~ H O M E
```

```
705\emptyset PRINT "TOTAL SO FAR : ";AS%
706\emptyset PRINT "TOTAL REMAINING : ";AL%
707\emptyset INPUT "ENTER % FOR FIELD ";PCT%(I)
7\emptyset8\emptyset IF PCT%(I) > AL% OR PCT%(I) = \emptyset THEN PCT%(I) = AL%
7090 AL% = AL% - PCT%(I)
71\emptyset\emptyset AS% = AS% + PCT%(I)
711\emptyset INPUT "ENTER DESCRIPTION OF FIELD : ";PTXT$(I)
712\emptyset IF LEN (PTXT$(I)) > 15 THEN PRINT "FIELD TOO
 LONG - 15 CHAR. MAX": GOTO 711\varnothing
713\emptyset IF AL% = \emptyset THEN GOTO 72\emptyset\emptyset
7140 NEXT I
72\emptyset0 NP% = I
721\emptyset IF NP% = 1 THEN 703\emptyset
722\emptyset HOME
7230 RETURN
```


## Printer setup utility

```
10 REM PROGRAM TO SET UP RADIX
2\emptyset BEEP$ = CHR$ (7)
4\emptyset ESC$ = CHR$ (27):TB = 5: DIM TBS(256)
8\emptyset HOME
9\emptyset TI$ = "MAIN MENU"
10\emptyset GOSUB 2560
11\varnothing PRINT TAB(TB);"\emptyset. EXIT "
12\emptyset PRINT TAB(TB);"1. SELECT CHARACTER SET."
13\emptyset PRINT TAB(TB);"2. SELECT PRINTING MODES"
14\emptyset PRINT TAB(TB);"3. SELECT PITCH "
150 PRINT TAB(TB);"4. SELECT LINE SPACING"
160 PRINT TAB(TB);"5. SET MARGINS, TABS & FORMS"
170 GOSUB 265\emptyset
18\emptyset IF S 〈 \emptyset OR S > 5 THEN PRINT BEEP$;: GOTO 17\emptyset
19\emptyset IF S = }\emptyset\mathrm{ THEN HOME : END
2\emptyset\emptyset ON S GOSUB 22\emptyset,49\emptyset,36\emptyset,141\emptyset,65\emptyset
21\emptyset GOTO 8\emptyset
22\emptyset REM SUBROUTINE TO DISPLAY CHARACTER SET MENU
24\emptyset TI$ = "CHARACTER SET MENU"
250 GOSUB 2560
260 PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
27\emptyset PRINT TAB(TB);"1. SELECT NLQ CHARACTER SET"
28\emptyset PRINT TAB(TB);"2. CANCEL NLQ CHARACTER SET"
29\emptyset PRINT TAB(TB);"3. SELECT ITALIC CHARACTER SET"
3\emptyset\emptyset PRINT TAB(TB);"4. CANCEL ITALIC CHARACTER SET"
310 GOSUB 2650
```

```
32\emptyset IF S < \emptyset OR S > 4 THEN PRINT BEEP$;:GOTO 31\emptyset
33\emptyset IF S = }\varnothing\mathrm{ THEN RETURN
34\emptyset ON S GOSUB 131\emptyset,136\emptyset,180\emptyset,184\emptyset
350 GOTO 22\varnothing
36\emptyset REM DISPLAY PITCHES MENU
38\emptyset TI$ = "PITCHES MENU"
390 GOSUB 2560
4\emptyset\emptyset PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
410 PRINT TAB(TB);"1. SELECT PICA PITCH"
4 2 \emptyset ~ P R I N T ~ T A B (~ T B) ; " 2 . ~ S E L E C T ~ E L I T E ~ P I T C H " ~
430 PRINT TAB(TB);"3. SELECT CONDENSED PITCH"
4 4 0 \text { GOSUB 2650}
45\emptyset IF S < \emptyset OR S > 3 THEN PRINT BEEP$;: GOTO 44\varnothing
4 6 \emptyset ~ I F ~ S ~ = ~ \emptyset ~ T H E N ~ R E T U R N ~
47\emptyset ON S GOSUB 830,88\emptyset,93\varnothing
4 8 0 ~ G O T O ~ 3 6 0 ~
4 9 0 ~ R E M ~ D I S P L A Y ~ P R I N T I N G ~ M O D E ~
500 TI$ = "PRINTING MODES MENU"
510 GOSUB 2560
530 PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
540 PRINT TAB(TB);"1. SELECT EXPANDED MODE"
550 PRINT TAB(TB);"2. CANCEL EXPANDED MODE"
560 PRINT TAB(TB);"3. SELECT EMPHASIZED MODE"
57\emptyset PRINT TAB(TB);"4. CANCEL EMPHASIZED MODE"
58\emptyset PRINT TAB(TB);"5. SELECT DOUBLE STRIKE MODE"
590 PRINT TAB(TB);"6. CANCEL DOUBLE STRIKE MODE"
6 0 0 ~ G O S U B ~ 2 6 5 0 ~
61\emptyset IF S < \emptyset OR S > 6 THEN PRINT BEEP$;: GOTO 6\emptyset\emptyset
62\emptyset IF S = }\emptyset\mathrm{ THEN RETURN
630 ON S GOSUB 17\emptyset\emptyset,1750,240\emptyset,244\emptyset,248\emptyset,252\emptyset
640 GOTO 490
6 5 0 ~ R E M
660 REM DISPLAY MARGIN, TABS AND FORMS
670 TI$ = "MARGINS, TABS & FORMS MENU"
6 8 0 \text { GOSUB } 2 5 6 0
69\emptyset PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
7\emptyset\emptyset PRINT TAB(TB);"1. SET HORIZONTAL TABS"
71\emptyset PRINT TAB(TB);"2. SET VERTICAL TABS"
72\emptyset PRINT TAB(TB);"3. SET LEFT MARGIN"
730 PRINT TAB(TB);"4. SET RIGHT MARGIN"
74\varnothing PRINT TAB(TB);"5. SET TOP MARGIN"
750 PRINT TAB(TB);"6. SET BOTTOM MARGIN"
760 PRINT TAB(TB);"7. CANCEL TOP & BOTTOM MARGINS"
77\varnothing PRINT TAB(TB);"8. SET PAGE LENGTH"
```

```
780 GOSUB 2650
79\emptyset IF S < \emptyset OR S > 8 THEN PRINT BEEP$;: GOTO 78\emptyset
8\emptyset\emptyset IF S = }\varnothing\mathrm{ THEN RETURN
81\emptyset ON S GOSUB 2\emptyset5\emptyset,236\emptyset,98\emptyset,106\emptyset,113\emptyset,121\emptyset,128\emptyset,188\emptyset
82\emptyset GOTO 650
83\varnothing REM SELECT PICA
85\emptyset S$ = ESC$ + "B" + CHR$ (1)
860 GOSUB 2730
870 RETURN
88\emptyset REM SELECT ELITE
890 S$ = ESC$ + "B" + CHR$ (2)
900 GOSUB 2730
910 RETURN
930 REM SELECT CONDENSED
940 S$ = ESC$ + "B" + CHR$(3)
960 GOSUB 2730
970 RETURN
98\emptyset REM SET LEFT MARGIN
100\emptyset GOSUB 2770
1010 INPUT "ENTER NEW LEFT MARGIN (1-255) ";X
102\emptyset IF X < 1 OR X > 255 THEN PRINT BEEP$;: GOTO 10\emptyset0
1030 S$ = ESC$ + "M" + CHR$(X)
1040 GOSUB 2730
1050 RETURN
106\emptyset REM SET RIGHT MARGIN
108\emptyset GOSUB 277\varnothing
1\emptyset9\emptyset INPUT "ENTER NEW RIGHT MARGIN (1-255) ";X
1100 IF X (1 OR X > 255 THEN PRINT BEEP$;: GOTO 108\emptyset
1110 S$ = ESC$ + "Q" + CHR$(X)
1120 GOSUB 2730: RETURN
1130 REM SET TOP MARGIN
1150 GOSUB 2770
116\emptyset INPUT "ENTER NEW TOP MARGIN (1-16) ";X
1170 IF X < 1 OR X > 16 THEN PRINT BEEP$;: GOTO 1150
1180 S$ = ESC$ + "R" + CHR$(X)
119\varnothing GOSUB 2730
12\emptyset\emptyset RETURN
1210 REM SET BOTTOM MARGIN
1230 GOSUB 2770
124\varnothing INPUT "ENTER NEW BOTTOM MARGIN (1-127) ";X
1250 IF X < 1 OR X > 127 THEN PRINT BEEP$;: GOTO 1230
1260 S$ = ESC$ + "N" + CHR$(X)
1270 GOSUB 2730: RETURN
128\varnothing REM CANCEL TOP & BOTTOM MARGIN
```

$130 \emptyset$ S\＄＝ESC\＄＋＂O＂：GOSUB 2730：RETURN
1310 REM SELECT NLQ
$1330 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{BB}$＋CHR\＄（4）
1340 GOSUB 2730：RETURN
1360 REM CANCEL NLQ
$1380 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{BB}$＋CHR\＄（5）
1390 GOSUB 2730：RETURN
1410 REM SELECT LINE SPACING
1430 TI\＄＝＂LINE SPACING MENU＂
1440 GOSUB 2560
1450 PRINT TAB（ TB）；＂Ø．RETURN TO MAIN MENU＂
$146 \varnothing$ PRINT TAB（ TB）；＂1．SELECT $1 / 6$ INCH LINE SPACING＂
$147 \emptyset$ PRINT TAB（ TB）；＂2．SELECT $1 / 8$ INCH LINE SPACING＂
$148 \emptyset$ PRINT TAB（ TB）；＂3．SELECT 7 DOT GRAPHICS SPACING＂
1490 PRINT TAB（ TB）；＂4．SELECT N／144 INCH SPACING＂
1500 GOSUB 2650
$151 \varnothing$ IF S 〈 $\emptyset$ OR S 〉4 THEN PRINT BEEP\＄；：GOTO $15 \emptyset \emptyset$
$152 \emptyset$ IF $S=\varnothing$ THEN RETURN
1530 ON S GOSUB 1550，1580，1610，164ø
1540 GOTO 141ø
1550 REM SELECT $1 / 6$ INCH LINE SPACING
$157 \varnothing$ S\＄＝ESC\＄＋＂2＂：GOSUB 2730：RETURN
$158 \emptyset$ REM SELECT $1 / 8$ INCH LINE SPACING
$160 \emptyset$ S\＄＝ESC $\$+$＂$\varnothing$＂：GOSUB 2730：RETURN
1610 REM SELECT 7 DOT GRAPHICS SPACING
1630 S\＄＝ESC $\$+$＂ 1 ＂：GOSUB 2730：RETURN
1640 REM SELECT N／144 INCH LINE SPACING
1660 GOSUB $277 \varnothing$
$167 \emptyset$ INPUT＂ENTER LINE SPACE（ $\varnothing$－255）＂；X
$168 \emptyset$ IF X＜$\varnothing$ OR X 〉 255 THEN PRINT BEEP\＄；：GOTO $166 \emptyset$
1690 S\＄＝ESC $\$+$＂ 3 ＂+ CHR\＄（X）：GOSUB 2730：RETURN
1790 REM SELECT EXPANDED
$172 \emptyset$ S\＄＝ESC \＄＋＂W＂＋CHR\＄（1）
1730 GOSUB 2730
1740 RETURN
$175 \emptyset$ REM CANCEL EXPANDED
$177 \varnothing$ S\＄$=$ ESC $\$+$＂W＂$+\operatorname{CHR} \$(\emptyset)$
$178 \emptyset$ GOSUB 2730
1790 RETURN
$18 \emptyset \emptyset$ REM SELECT ITALIC
$182 \emptyset$ S\＄＝ESC\＄＋＂4＂：GOSUB 2730
$183 \varnothing$ RETURN
1840 REM CANCEL ITALIC
1860 S\＄＝ESC $\$+$＂5＂：GOSUB 2730

```
187\emptyset RETURN
188\emptyset REM SET PAGE LENGTH
1900 GOSUB 277\varnothing
1910 PRINT "PAGE LENGTH IN INCHES OR LINES (I,L)?"
192\emptyset PRINT TAB(TB);
1930 GET A$
194\emptyset IF A$ = "I" THEN 197\varnothing
1950 IF A$ = "L" THEN 2\emptyset1\emptyset
1960 PRINT BEEP$;: GOTO 193\varnothing
197\varnothing INPUT "LENGTH OF PAGE IN INCHES (1-32) ";X
1980 IF X < 1 OR X > 32 THEN PRINT BEEP;: GOTO 19ø\emptyset
1990 S$ = ESC$ + "C" + CHR$ (})=\mathrm{ + CHR$(X)
2000 GOSUB 2730: RETURN
2\emptyset1\emptyset INPUT "LENGTH OF PAGE IN LINES (1-127) ";X
2\emptyset2\emptyset IF X < 1 OR X > 127 THEN PRINT BEEP$;: GOTO 190\emptyset
2030 S$ = ESC$ + "C" + CHR$ (X)
2040 GOSUB 2730: RETURN
2050 REM SET HORIZONTAL TAB
2070 S$ = ESC$ + "D":MAX = 255: GOSUB 2080: RETURN
208\emptyset REM SET TABS
2100 GOSUB 2770
211\varnothing PRINT "WOULD YOU LIKE TO SET THE TABS IN"
212\emptyset PRINT TAB(TB);"REGULAR INTERVALS, OR SPECIFY"
2130 PRINT TAB(TB);"EACH ONE INDIVIDUALLY (R,I) "
2140 GET A$
2150 IF A$ = "R" THEN 230\varnothing
216\emptyset IF A$ = "I" THEN 218\emptyset
217\emptyset PRINT BEEP$;: GOTO 2\emptyset8\emptyset
218\emptyset PRINT :I = 2:TBS(1) = - 1
219\varnothing PRINT TAB(TB);"ENTER THE LIST OF TABS, IN "
22ø\emptyset PRINT TAB(TB);"ASCENDING ORDER. NO MORE THAN
 ";MAX;"."
221\varnothing PRINT TAB(TB): INPUT "ENTER TAB ";TBS(I)
222\emptyset IF TBS(I) < }\emptyset\mathrm{ OR TBS(I) > 255 THEN 217ø
2230 IF TBS(I) = \emptyset THEN I = 1: GOTO 227\varnothing
2240 IF TBS(I) < = TBS(I - 1) THEN 217\varnothing
2250 I = I + 1: IF I > MAX THEN 217\emptyset
2260 GOTO 221\emptyset
2270 I = I + 1
228\emptyset S$ = S$ + CHR$ (TBS(I)): IF TBS(I) < > \emptyset THEN 227\emptyset
2 2 8 5 ~ G O S U B ~ 2 7 3 0 ~
2290 RETURN
230\emptyset PRINT : PRINT TAB(TB);: INPUT "ENTER INTERVAL
 ";X
```

```
231\varnothing IF X < \emptyset OR X > 255 THEN PRINT BEEP$;: GOTO 2\emptyset8\emptyset
232\varnothing FOR I = 1 TO 255 STEP X
2330 MAX = MAX - 1: IF MAX = \emptyset THEN 2350
2340 S$ = S$ + CHR$ (I): NEXT I
2350 S$ = S$ + CHR$ (\emptyset):GOSUB 2730: RETURN
2360 REM VERTICAL TABS
238\emptyset S$ = ESC$ + "P":MAX = 2\varnothing: GOSUB 2ø8\emptyset
2390 RETURN
2400 REM SELECT EMPHASIZED
2420 S$ = ESC$ + "E": GOSUB 2730
2430 RETURN
2440 REM CANCEL EMPHASIZED
2460 S$ = ESC$ + "F": GOSUB 2730
2470 RETURN
248\emptyset REM DOUBLE-STRIKE
2500 S$ = ESC$ + "G": GOSUB 2730
2510 RETURN
2520 REM CANCEL DOUBLE-STRIKE
2540 S$ = ESC$ + "H": GOSUB 2730
2550 RETURN
2560 REM PRINT A MENU TITLE
257\varnothing HOME
2580 PRINT : PRINT : PRINT
2590 PRINT TAB(6);"---RADIX PRINTER SETUP ---"
2600 PRINT
2610 PRINT TAB((4| - LEN (TI$)) / 2);TI$
262\emptyset PRINT : PRINT
2630 RETURN
2650 REM SELECTION
2660 VTAB 19: HTAB 10: PRINT "HIT 〈P> FOR SAMPLE PRINT"
2665 VTAB 21: HTAB 1\emptyset: PRINT "SELECTION ";
2 6 7 4 ~ G E T ~ C \$ ~
2675 IF C$ = "P" THEN GOSUB 3900: GOTO 2650
2680 IF C$ < "\emptyset" OR C$ > "9" THEN PRINT BEEP$;: GOTO
 2670
2690 S = VAL (C$)
2700 VTAB 20:
2710 FOR H = 10 TO 4\varnothing: HTAB H: PRINT " ";: NEXT H
272\emptyset RETURN
2730 REM OUTPUT COMMAND STRING
2750 PR# 1
2755 PRINT S$;
2758 PR# \emptyset
2760 RETURN
```

$277 \varnothing$ REM CLEAR SCREEN AND POSITION CURSOR
$279 \varnothing$ HOME : VTAB 19: HTAB TB: RETURN
$30 \varnothing 0$ REM PRINT
3005 PR\# 1
3097 PRINT CHR\$ (9);"255N"
$301 \emptyset$ FOR I = 1 TO 4: FOR J = 33 TO 126
$302 \emptyset$ PRINT CHR $\$(\mathrm{~J})$; : NEXT J
3030 PRINT : NEXT I
$304 \emptyset$ PR\# $\emptyset$
3050 RETURN


[^0]:    10 'Prints all block graphic characters.
    $2 \emptyset$ WIDTH "LPT1:",255
    30 FOR J = $16 \emptyset$ TO 255 STEP 8
    40 FOR $\mathrm{I}=\mathrm{J}$ TO J +7

